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P r e fa c e

Eight years ago, I took my first BCI-related course. A lot has changed since
then, not only in brain-computer interaction, but also in human-computer
interaction in general. Touch interfaces were barely functional back then.
Now they are everywhere and it is the onlymode of interactionmydaughter
knows, aside from the physical buttons on her toys and the remote control.

Now we have a similar situation with brain-computer interfaces making
their first tentative steps in commercial applications for the general public.
I hope in another eight years, they toowill be common-place. Although they
are still a bit clunky right know, like touch interfaces then, brain-computer
interfaces have a lot to offer. Not only for patients, but for everybody.
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Acronyms

BCI brain-computer interface.
EEG electroencephalography.
ERP event-related potential.
FMRI functional magnetic resonance imaging.
FNIRS functional near-infrared spectroscopy.
HCI human-computer interaction.
MEGmagnetoencephalography.
MImotor imagery.
PET positron emission tomography.
SCP slow cortical potential.
SSVEP steady-state visually-evoked potential.



G l o s sary

Application A computer program that helps a user with some particular
task or goal.
Asynchronous The user can provide input to the system at any time. See
also synchronous.
BCI cycle The cycle of interaction that takes place within and between the
user and the system, including the processing.
BCI pipeline The sequence of data processing steps from the user to the BCI-
controlled application. This simplified BCI system view ignores the effect
the BCI pipeline can have on the user, which in turn will affect the system.
Biosemi ActiveTwo A high-grade EEG system, using a cap for positioning
and gel for conduction. 256 electrodes can be mounted in one cap. The sam-
pling rate can be a maximum of 16 kHz.
Brain-computer interface A system that recognizes mental tasks or states
based on the user’s brain activity. This allows you to control (or otherwise
affect) devices (or applications) directly with your brain.
Cerebral cortex The part of the brain closest to the scalp, of which wemea-
sure the neuronal activity with EEG. The cortex consists of four lobes which
are roughly related to planning and motivation, integration of sensory in-
formation, sound and verbal memory, and sight.
Control interface The control interface translates the logical control signal
to a semantic control signal: something meaningful in terms of the applica-
tion.
Electroencephalography The recording of voltage changes along the scalp.
These changes are the result from activity of groups of neurons in the cor-
tex.
Emotiv EPOCAcommercially available,wireless head set formeasuring EEG
that is easy to use. It comeswith 14 electrodes (plus CMS andDRL) at a 128Hz
sampling rate.
Event-related potential A brain response that occurs related to some spe-
cific event (stimulus).
Feature extraction After pre-processing, the purpose of feature extraction
is tomagnify those characteristics that aremost distinctive formental state
detection, and to suppress or remove the rest.
Feature translationWhen themost distinctive features have been derived,
they can be translated to some logical meaning, which expresses what
mental activity has been detected. This feature translation is commonly
achieved through regression or classification.



Feedback Information from the system to the user. Feedback can inform
the user on changes in the application state, but also on what user input
the BCI detected.
Ground truth A label indicating the actual class of a certain data sample.
This allows us to either train a classifier to label such samples as that class,
or to determine the performance of a classifier by comparing the classifica-
tion results with this known ground truth.
Human-computer interaction The interaction between people (users) and
computers. As an area for research and design, HCI involves the study, plan-
ning, design and uses of this interaction.
Input modality Category of sensors or devices which provides a pathway
over which the user can provide a certain type of input to the computer.
Input task An action the user has to perform to provide certain input to
the system.
Interface The space that enables the user to communicate with a computer
(input) and vice versa (feedback). This includes both hardware (such as EEG-
caps) and software (such the graphical user interface).
Motor activityMotor activity — or: actual movement — results in brain ac-
tivations similar tomotor imagery. Actualmotor activity, however, is easier
to detect, easier to instruct, and provides a ground truth.
Motor imagery A mental task. The basis for its detection is that when we
imagine a certain movement, this results in similar activity in the brain as
actually executing that movement.
Mutual information The amount of information one sequence provides
over another, in bits. When there is no relation between the two sequences,
themutual information is 0 bits. If one sequence completely determines the
other, the mutual information is equal to the amount of information in the
sequence, its entropy.
Non-stationarities Background changes in the observed brain activity
recordings due to changes in the environment, in the user, or differences
between users, which can interfere with the detection of mental states and
mental tasks.
P300A brain response identified by a positive voltage change around 300ms
after a rarely-occurring event that is relevant to your current task. This
brain response is mostly used for BCI spelling applications.
Post-classification processing Methods that aid in the translation from
logical to semantical control signals, that is from classification (feature
translation) results to input with meaning in the application context.
Post-processing See post-classification processing.
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Pre-processing In the pre-processing stage, the data obtained through sig-
nal acquisition is processed to reduce artifacts and noise in the data.
Relaxation Amental state often used in commercial BCI systems which can
be detected from the amount of alpha activity over the parietal lobe. This
alpha activity is attenuated by mental effort.
Self-paced See asynchronous.
Signal acquisition The process of recording the user’s brain activity (in
the case of a BCI). Sensors measure the brain activity. The obtained samples
are then converted to digital values to be used by the receiving device. See
Emotiv EPOC and Biosemi ActiveTwo.
Slow cortical potential A category of slowly changing potentials. In BCIs,
the most-used SCP is the Bereitschaftspotential, which is elicited in prepa-
ration for movement.
Steady-state visually-evoked potentialAbrain response.When a stimulus
changes at a specific frequency, such as a flickering image that is inverted
at regular intervals, we can observe this frequency and its harmonics in the
brain. In the case of a visual stimulus, the brain response is called steady-
state visually-evoked potential.
Synchronous Input is only observed during specific time slots, often when
the input from the user is dependent on some stimulus from the system.
System-paced See synchronous.
Usability How easy and pleasant something is to use. This consists of vari-
ous aspects, such as efficiency and effectiveness, learnability and memora-
bility, error handling and user satisfaction.
User A person interacting with a computer or other device.
User experience The feelings and perceptions of a user as a result of inter-
acting with a system.
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A b stract ( N L )

B R E I N - C O M P U T E R I N T E R F A C E S B E T E R M A K E N :

V E R H O O G H E T G E B R U I K S G E M A K M E T N A - V E R W E R K I N G

Met brein-computer interfaces (BCIs) kun je dingen rechtstreeks aans-
turen met je hersenen. Dit soort invoerapparaten gebaseerd op metingen
van het lichaam hebben echter last van ruis, veranderingen en ambiguïteit.
In het laboratorium kunnen we de systemen daar enigszins voor bescher-
men, maar in ‘de echte wereld’ kunnen BCIs wel wat extra hulp gebruiken.

Hoe belangrijk is goede besturing eigenlijk? Hoe goed kunnen gebruikers
überhaupt hun controle inschatten? Veertien proefpersonen evalueerden
ieder vijf weken lang drie verschillende sets van mentale taken. Het belan-
grijkst vonden ze dat de taken goed werden herkend door het systeem en
dat ze makkelijk waren om te doen. Als mensen weten wat voor invoer ze
geven,weten ze vrij goed hoeveel controle ze hebben. Zevenentachtig proef-
personen speelden een browserspelletje met verschillende mate van cont-
role. De werkelijke mate van controle verklaarde 72% van de controle die
men dacht te hebben.

Een simpele oplossing die de herkenning van hersensignalen kan
verbeteren en de invoer kan vergemakkelijken is post-processing (‘na-
verwerking’). Post-processing verandert hoe de herkende hersensignalen
daadwerkelijk worden gebruikt in een applicatie. Post-processing is stan-
daard bij andere invoersignalen, maar bij BCIs is dat nog niet het geval.
Van de meer dan 200 BCIs waarover gepubliceerd is tot 2006 gebruikt
maar 15% post-processing, volgens een eerdere literatuurstudie. Een ver-
volgstudie laat zien dat post-processing methodes nog steeds worden on-
dergewaardeerd in BCI onderzoek, hoewel de gerapporteerde verbeterin-
gen met deze methodes erg veelbelovend zijn! Ik geef een overzicht van
post-processing-methoden met richtlijnen voor toepassing, om bewust ge-
bruik van en discussie te stimuleren. Tegelijkertijd blijft het belangrijk deze
methodes te testen in de praktijk. Het doel van een experimentmet achttien
proefpersonen was de inspanning te verlagen met post-processing. Hoewel
de tijd dat men de actieve taak moest uitvoeren significant werd vermin-
derd, had het niet het verwachte effect op de gevoelde inspanning. Het afwis-
selen tussen de actieve en inactieve taak kostte meer moeite.

Dit werk bevestigt het belang van goede besturing voor de gebruiker
en biedt onderzoekers en ontwikkelaars van BCIs een oplossing: post-
processing. Een overzicht en richtlijnen worden aangegeven om bewust ge-
bruik en discussie te stimuleren. Het onderzoek laat ook zien hoe essentieel
gebruikersevaluaties zijn.
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A b stract ( E N )

M A K I N G B R A I N - C O M P U T E R I N T E R F A C E S B E T T E R :

I M P R O V I N G U S A B I L I T Y T H R O U G H P O S T - P R O C E S S I N G

Brain-computer interfaces (BCIs) allowyou to control things directlywith
your mind. Unfortunately, such input devices based on observations of the
body are plagued by noise, non-stationarities, and ambiguity. In the lab, we
can protect systems somewhat from these influences, but in ‘the real world’,
BCIs could use a little help.

How important is good control anyway? How well can users even assess
their level of control? Fourteen participants evaluated three sets of mental
tasks each for fiveweeks.Most important to themwas good task recognition
and easy task execution. When people know the input they provide, they
have a good perception of their level of control. Eighty-seven participants
played a browser game with varying levels of control. The actual amount of
control explained 72% of the control they thought they had.

Post-processing is a simple solution to improve the recognition of brain
signals and make it easier to provide. Post-processing changes the way de-
tected brain signals are actually being used in an application. Although post-
processing is standard practice with other inputs, this is not yet the case
with BCIs. Of the more than 200 BCIs published about until 2006 only 15%
used post-processing, according to an earlier literature study. A follow-up
review shows that post-processing methods are still under-appreciated in
BCI research, even though the improvements using thesemethods look very
promising! To stimulate conscious use of and discussion about these post-
processing methods, I provide a method overview with guidelines for appli-
cation. At the same time, it is important to test these methods in practice.
The goal of an experiment with eighteen participants was to reduce the nec-
essary effort with post-processing. Although it did reduce the amount of
active task execution time, this did not result in the expected reduction in
perceived effort. Switching between the active and passive tasks cost more
effort.

This work confirms the importance of good control to the user and offers
BCI researchers and developers a solution: post-processing. An overview
and guidelines are provided to stimulate deliberate use and discussion. The
research also shows how essential user tests are.
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Exten d e d S ummary

Controlling things with your thoughts is the domain of science fiction and Chapters 1 and 2
fantasy. Brain-computer interfaces (BCIs) promise to bring this fantasy into Motivation
the real world, as they can recognize mental tasks and mental states based
on the user’s brain activity.

Parts of this promise have been held up, but other parts seem to be more
difficult. Being able to control things, does not necessarily mean you can
control them well or easily. Many inputs based on measurements from the
body suffer from similar problems related to noise, non-stationarities, and
ambiguity. And these problems get worse the more we move towards real-
world applications, with more noise, distractions, and multitasking.

Most research on BCIs is devoted to improving the detection of themental
tasks that drive these interfaces. My work focuses on improving the control
over these systems. To overcome the problems inherent in this uncertain
input modality based on observations from the body, we should take note
from human-computer interaction research, where the user is at the center
of design and evaluation. We can also learn from solutions used by other
such uncertain input modalities.

The main research goals were first to examine the importance of control Research goals
through user tests, and secondly to explore a possible solution with a liter-
ature review and a concluding experiment to test it in practice.

As a first step, I investigated what users prefer in their mental tasks for Chapter 3
BCI control. For five weeks, fourteen people played a role-playing game us-
ing three different novel mental tasks to change their avatar from human
to animal and back. The results were very consistent: What users want is
first of all that the mental tasks are well recognized by the system, and sec-
ondly that these tasks are easy to do. Another important observation was
that the perceived task recognition significantly impacted other user expe-
rience measurements.

Having said that, how well can users even assess how good the input Chapter 4
recognition really is? Eighty-seven people played a browser game with a
varying amounts of control. The actual level of task recognition explained
72% of the participants’ perception of control. When people know what in-
put they are providing, they appear to be competent at estimating their
amount of actual control over the system. Uncertainty over provided brain-
computer interface input will decrease with training, making the actual
level of control more and more important to the user’s sense of control.

Good control based on inputs that are easy to provide — that seems to be Chapter 5
the opposite of what BCIs currently have to offer, especially in the case of
consumer-grade hardware used in real-world situations. Fortunately, it is

x ix



not that difficult to significantly improve the performance and reduce the
effort it takes for the user to provide ‘thought input’, simply by adjusting
the way detections are used through post-classification processing meth-
ods. Such methods are already commonly applied in all other input modali-
ties. However, a 2007 survey of over 200 BCIs showed that only 15% of these
systems used some form of post-processing to improve performance. After
a follow-up literature study, I have to conclude that this undervaluation of
these post-processingmethods in BCI research still persists, despite the fact
that most reported performance gains from adding post-processing meth-
ods are very promising.

Only when the application of post-processing methods is done deliber-Chapter 6
ately, and informed through discussion and structural evaluation, can we
fully benefit. I have created an overview of post-processing methods, com-
bined with guidelines for their application, to support this.

To investigate how well this theory translates into practice, I concludeChapter 7
with a final experiment with eighteen participants which evaluates the in-
fluence three post-processingmethods had on the perception of control and
effort. Although the post-processing did result in a significant reduction of
the amount of active task execution time, the perceived effort did not de-
crease accordingly. Apparently, switching between the active and passive
tasks took more effort. This points to the importance of evaluating systems
with users.

This work confirms the importance of task recognition accuracy in brain-Chapter 8
computer interfaces from the users’ point of view, and offers a solution toContribution
the lack of accuracy inherent in this input device. It brings post-processing
methods and their benefits to the attention of researchers and developers
of brain-computer interfaces, and encourages their deliberate use with an
overview and guidelines. This research also points to the significance of con-
sidering the user in the loop.

xx







1 I n t r o d u ct i o n

The design of the interface is a
design of human experience and,
as such, the interface becomes a
locus of power.

Teena Carnegie
Interface as Exordium [1]

Brain-computer interface (BCI) is a somewhat futuristic term for somewhat A popular formal
definition of BCI:
a communication
system in which
messages or
commands that an
individual sends to
the external world do
not pass through the
brain’s normal
output pathways of
peripheral nerves
and muscles [2].

futuristic technology. Controlling things with your thoughts has long been
the domain of science fiction and fantasy. Yet I say ‘somewhat futuristic’,
because these interfaces are already available to consumers, right now.

A BCI is an input device, not that different from a keyboard which sends
the keys you press to a computer. Instead of detecting key presses, brain-
computer interfaces detect specific brain activations. As such, a BCI allows
you to control devices directly with your brain. The term ‘control’ here
should be interpreted loosely, as: “providing input for other devices so they
in turn can respond to it in some way”. Similarly, a ‘device’ can be anything
that can respond to the output signal of a BCI, whether it is a wheelchair [3],
a video game [4], or the international space station [5].

Brain-computer interfaces provide private, hands-free interaction. And
as they are based on brain activity, they could come closer to assessing in-
tent than any other interface [6]. Most BCI applications are aimed at health
(assistive technology, therapy, wellness), finance (neuro-economics and
neuro-marketing), and entertainment (mainly gaming) [7]. To give some
concrete examples of products that are currently on the market: NeuroIn-
sight, a market research company, analyzes how the brain responds to ad-
vertisements [8]. No Lie MRI offers a brain-based lie detector [9]. The Muse
headband, created by InteraXon, comeswith an appwhichhelps you toman-
age stress and stay focused [10]. In short, BCIs can be pretty useful.

But there is one big complication: BCIs do not provide perfect recognition
of what the user attempts to convey. Like other input modalities based on
observations of the body, BCIs suffer from a number of basic problems that
are difficult to combat [11, 12]. The sensors are highly sensitive to noise [13,
14]. It is very difficult to distinguish between activity intended for control

3



4 i n t r o d u c t i o n

and other activity — particularly similar activity that is triggered naturally:
the so-called Midas Touch problem [15]. Moreover, there is the challenge of
robustness to changes in the environment, changes in the user, and of dif-
ferences between users [16]. It has also been posed that the high variability
in BCI performance is exactly due to the fact that we look at the brain di-
rectly, when it is our cerebellum and our spinal motoneurons that make our

The cerebellum,
our ‘little brain’, is

beneath the cortex at
the back of the head.

interactions with the outside world smooth, adaptive, and accurate1 [17].
All in all, it can be said that BCIs suffer from an inherent uncertainty in

their detections. This is reflected in the way most BCI experiments are set
up: the user is preferably put in a shielded room; is instructed not to move
or blink, and stay relaxed; and is doing a very simple task.

In controlled settings, accuracies range from 61% up to 100% [18]. For
this technology to become an accepted part of our everyday lives, however,
it needs to be able to function in real-world situations, where the user is al-
lowed to behave naturally. Potential users will also demand minimal train-
ing times (preferably none at all: plug-’n-play), and for the system to be as
cheap as possible. Besides, they will probably bemultitasking. Very few cur-
rent applications have the input itself at the centre. Generally, the purpose
for providing input is to meet some other user goal, which will require at-
tention as well. Each of these needs will mean a reduction in recognition ac-
curacy. Additionally,most of these needs are not only important for healthy
users, but also for people with physical disabilities [19].

Current research for improving brain-computer interfaces focusesmostlyIn this thesis I use ‘I’
when I speak for

myself or describe
something I did

(mostly) by myself.
I’ve also been part of
a lot of team work, so
when I use ‘we’ I’m

discussing a
collaborative effort. I

also use ‘we’ in a
more general sense,

such as ‘us BCI
researchers and

developers’.

on increasing recognition through comparing various methods for feature
extraction and mental state detection. With this approach, we leave out
many aspects that also have large effects on how a brain-computer inter-
face is experienced, such as the user, the mental tasks, and the mapping
from the mental task input to application controls. The studies in this the-
sis are built around exactly these three aspects.

In the first half of the book, I investigate the need for a solution for this
inherent uncertainty in BCIs by looking at the user and the mental tasks.
The second half of the book explores the current state and promise of one
specific solution: post-processing.

In Chapter 3 I look into the user preference and experience for a number
of mental tasks, using user-centredmethods from the field of human-comp-
uter interaction. It confirms that how well the task is recognized by the
system is very important to the users, which takes us to Chapter 4, which
looks at how well users can assess this system recognition aspect of control.

Then we move on to a solution to deal with the uncertainty inherent in
mental task recognition, through the mapping of the mental input tasks
to the application controls. This post-classification processing can signifi-
cantly increase detection performance and the ease with which users con-

1 As a solution Wolpaw proposes to use goal selection instead of process control, by which he is
trying to reduce the need for this smooth, adaptive, and accurate control.



i n t r o d u c t i o n 5

trol the application. Post-processing to improve usability is already com-
monpractice for all other inputmodalities. The literature study in Chapter 5
shows the benefits and current state of post-processing in brain-computer
interface research. Chapter 6 provides an overviewof post-processingmeth-
ods, combined with guidelines for their application. In Chapter 7 I inves-
tigate the effects of some of these methods in practice. This experiment
also reveals the gap between the theory and practice when applying post-
processing methods, thereby pointing the way to future research.

But before all that, I will quickly explain some of the basics of BCIs in the
next chapter. If you have no previous experience with brain-computer in-
terfaces, this informationwill help you understand the chapters that follow.
That chapter also provides themotivation for BCI-related decisions that are
common across the studies in this thesis.

Key po i nt s

• Brain-computer interfaces allow you to control (or affect) devices (or Every chapter ends
with key points, the
most important
statements of that
chapter according to
the author. It
provides a quick
reference and allows
you to skip certain
chapters while still
getting the
information that is
essential for the
chapters that follow.

applications) directly with your brain. This private, hands-free input
modality based on mental states can be used for a large variety of
applications.

• The detection of mental tasks is imperfect, largely due to problems
inherent in the type of input based on bodily measurements: prob-
lems such as noise, non-stationarities, and ambiguity. As a result, it is
problematic to use BCIs in real-world situations.

• In this thesis, I propose to use post-classification processing methods
to address a big part of this problem.

• To move towards a more holistic view in BCI development, I recom-
mend the use of methods from human-computer interaction to ob-
serve these systems as a whole, including the user and the applica-
tion.
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2 B C I b a s i c s

This chapter gives a short introduction into brain-computer interfaces. It explains
how brain-computer interfaces work and introduces some of the terminology com-
mon in this field, with special focus on the context of the research in this thesis.

2 . 1 B C I a n d games

A brain-computer interface allows you to provide brain-based input to a
computer. The result is private, hands-free interaction. And as the input is
based on your brain activity, BCIs could come closer to assessing your in-
tent than any other interface [1]. As already mentioned in the introduction,
most BCI applications are aimed at health (assistive technology, therapy,
wellness), finance (neuro-economics and neuro-marketing), and entertain-
ment (mainly gaming) [2].

In this thesis, the focus is on games. A large part of the population plays
games, and it is known that gamers are often among the first to adopt new
technology [3]. Learning a new skill like this could be part of the challenge
of the game [4]. It comes as no surprise then that many of the current BCI
applications are game-oriented.

Games are a compelling target for brain-computer interfaces, but brain-
computer interfaces also have a lot to offer to games. Immersion may be in-
creased through such intuitive input or by having the player’s mental state
reflected in the game [5]. Through neurofeedback mechanisms, BCI games
can also train players to bemore relaxed or concentrated, or may even help
with ADHD and anxiety [6]. For further reading, there are many interesting
overview papers on the use of BCI in games, such as Lécuyer et al. [7], Ni-
jholt [8], and Marshall et al. [9]. There are also sources of inspiration aimed
at game developers specifically, such as the ‘brain-enhanced gaming con-
cepts’ published by Neurosky, a neuro-headset manufacturer [10].

From a scientific point of view, games are also interesting. Games provide
a safe virtual test ground (as opposed to, for example, navigating a mind-
controlled wheelchair through actual traffic). Besides, games can help ex-
periment participants to staymotivated and focused for longer periods [11].

9
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2 . 2 T h e c ompon ents o f a B C I

The interaction of the user with a computer is often visualized as a cycle.
A good example is the model by Chapanis, see Figure 1 [12]. The user (hu-Human-computer

interaction man) provides information to the computer (machine), and vice versa. The
interface is in between the user and the computer. Note the distinction be-Interface
tween how the information is provided, and how it is perceived. Physical
actions by the user are being perceived as control inputs in the machine. In
our case, the brain-computer interface determines which brain responses
are listened for (the equivalent of the ‘motor responses’), and which subse-
quent information is sent to the machine (‘controls’).

F i g u r e 1 : Human-computer interaction model, based on Chapanis, 1965 [12].

Mason and Birch propose a more elaborate cycle for brain-computer in-
terfaces specifically, which distinguishes various key steps in the process
from measuring brain activity to using the interpretations for control, see
Figure 2 [13]. This interaction cycle is often referred to as the BCI cycle [14].BCI cycle
The word ‘cycle’ emphasizes that there is a feedback loop. Adjusting one
analysis step does not only affect the steps that follow, but may therefore
also influence the steps before. This is an important reason to test BCI sys-
tems as a whole, with the user in the loop. The sequence of processing steps
is sometimes also referred to as the BCI pipeline, which infers a simplified lin-BCI pipeline
ear point of view. With this kind of thinking, it is possible to test different
pipelines on one pre-recorded dataset of brain signals. It is important to re-
member, however, that this is a simplification thatmay not hold in practice,
as a different pipeline may cause the user to provide different input.

The BCI cycle consists of the following steps: the user, signal acquisition,
pre-processing, feature extraction, feature translation, the control inter-
face, application, and feedback1.

1 Themain difference between theMason and Birch cycle andmost othermodels is the presence
of the control interface. This element is crucial to the research presented in this thesis. The
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F i g u r e 2 : Model of the online BCI cycle, which indicates the various processing
steps, and the data streams in between.

The BCI hardware records the user’s brain activity, so it handles signal ac- Signal acquisition
quisition. Often it also applies some pre-processing (pre feature extraction) Preprocessing
to reduce artefacts and noise in the data.

The subsequent processing steps of the brain-computer interface can the-
oretically be part of the hardware, but are generally implemented in the
software of the device receiving the hardware input. This software part
can do additional preprocessing, followed by feature extraction and trans-
lation. During feature extraction, the preprocessed brain signals are trans- Feature extraction
formed to magnify those characteristics that are most distinctive for what
we are trying to detect. The rest is suppressed or even thrown out com-
pletely. These transformed features are then translated so they provide
some logical meaning. For example, high activity over the left sensorimotor Feature translation
cortex (central-left on the head), could be translated to a high probability
of right hand movement (yes, it is on the opposite side). This logical con-

main difference between my model and that of Mason and Birch is the substitution of the
device and device controller by application. This is becausemymodel is focused on software, while
Mason and Birch focused on controllers for hardware such as wheelchairs. With hardware as
well as software, it is recommended to dedicate as little screen estate or physical space to the
controller as possible. The controller is simply a means to an end, and it is the end that the
user should be able to focus on. A controller device can even physically block the user from
participating in social settings or get in the way of using the device they are trying to control
in the first place, for example when you cannot see where the wheelchair is going [15].
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trol signal expresses what mental activity has been detected by the brain-
computer interface.

This detection then needs to be translated into something meaningful in
terms of the application that is being controlled. This can either be handled
by the BCI, the application, or a separate software module altogether: the
control interface. A big part of this thesis is about this translation from log-Control interface
ical to semantic control. Two concrete examples from this thesis: If the BCI
indicates low relaxation, then turn the player avatar into a bear (Chapter 3).
And: If the BCI observes hand movement, select current option (Chapter 7).

Looking at the way input device software is currently implemented, the
control interface is simply the final step in the device driver2. The descrip-Device driver
tion on Wikipedia for Device driver clearly shows the relationship between
driver and control interface:

“Device drivers [act] as translator between a hardware device
and the applications or operating systems that use it.” [17]

Both pieces of software are described as a translator between the device
output and the application. The article further explains the benefits of this:

“Programmers canwrite the higher-level application code inde-
pendently of whatever specific hardware the end-user is using.”

As a programmer, you should not have to know how a keyboard works
exactly, or what specific keyboard the user has. The application can sim-
ply catch the key presses that occur. Similarly, an application programmer
should not need to know how a BCI works, only what input it can provide.
The application should simply be able to listen for specific events, such as
changes in the user’s level of relaxation. Drivers often offer the user some
customization options. Changes in the driver will affect the input received
by all applications.

If the control interface is the driver, then examples of in-application post-In-application
post-processing processing are application-specific key-bindings or to context-dependent

responses in the application. Thismeans that any application should be able

A neuron receives
input via dendrites.
This can trigger the
neuron to send an
electrochemical

signal over its axon.

to listen for the user’s level of relaxation as detected by theBCI, but different
applications may have different processing of that same input. It is those
additional in-application translation steps that create the stage for optimal
usability.

2 . 3 S i g na l a c q u i s i t i o n

So, how can we observe brain activity? The brain is an enormous network
of neurons. Neurons are cells which communicatewith one another by send-
ing electric currents. This electrical activity, or the resultingmagnetic fields,

2 Allison describes BCI drivers as a crucial part of BCI software integration [16].
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can be measured, with EEG or MEG. Another indication of brain activity is
the change in blood flow as active cells require more oxygen carried by red
blood cells. This principle is used by methods such as PET, fMRI, and fNIRS.

One of the most-used methods for recording brain activity is EEG, elec-
troencephalography. Electrodes on the outside of the headmeasure voltage
differences that are the result of the activity of large groups of neurons. It is
so popular, because it does not require surgery, is relatively cheap, portable,
and responds quickly to changes in brain activity. EEG has also been the
method of choice for the BCI experiments described in this thesis.

This brain imaging method also comes with some drawbacks, however.
The electrodesmeasure only superficially, so we can observe the cortex, but
none of the deeper brain structures. As the electrodes are on the outside of
the head, the measurements are highly attenuated and spread out by the
fluids, bone, and skin in between the neurons and the sensors. Besides, EEG

An electrode and the
cortex.

has a poor spatial resolution: we cannot fit that many sensors onto a certain
area on the head, making it less precise in terms of location3. Additionally,
the electrodes are highly sensitive to artifacts, both from the body and from
the environment, while the voltage differences to be measured are weak.
This results in a low signal-to-noise ratio.

One of the most entertaining explanations of why it can be so difficult to
interpret EEG is the metaphor by Dr David Lewis, cited in a book by John
Naish: “Using the [EEG] machine is like standing outside a football ground,
trying to interpret the action in the game by listening to the roars of the
crowd” [20].

EEG systems range from high quality medical systems to much cheaper
consumer-grade EEG headsets. Higher grade EEG systems generally result
in better measurements, from more electrodes, which are more precisely
positioned. These systems are also 100 times more expensive, require con-
ductive gel, and a trained person tomount the electrodes on your head. Con-
sumer EEG sets, on the other hand, are more easy to use. You can put them
on yourself, they are generally wireless, andwork either ‘dry’ or with a little
contact lens fluid. And, not to be underestimated, they are designed to look
good too. Inmy earlier research, I used a high grade BioSemi ActiveTwo sys-
tem (Chapter 3). Later on, I switched to the consumer-grade Emotiv EPOC,

The Biosemi headset.see Figure 3 (more on this headset in Chapter 7).

3 Putting things in perspective with some numbers: the average adult male human brain has 86
billion neurons. The cerebral cortex contains only 16 billion of those neurons [18]. And when
we then use an EEG headset with 16 electrodes, we are trying to observe about one billion
neurons with just one electrode. Secondly, the amplitude of an action potential, which is the
electrochemical impulse neurons send over their axon to communicate, is about 100mV [19].
What we measure with EEG on the outside of the brain is in the microvolt range.
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F i g u r e 3 : The Emotiv EPOC. A commercially available, wireless head set that is
easy to use. It comes with 14 electrodes (plus CMS and DRL) at a 128Hz
sampling rate.

2 . 4 M enta l i n p ut

Which mental inputs could we use to control a brain-computer interface?
The four most-used inputs are: P300, SSVEP, SCP, andMI [21, 22]. They have
been thoroughly researched in neuroscience, and are still popular research
topics today. They have proven to be relatively easy to detect, and are from
that point-of-view quite suitable to control things with4. I will quickly de-
scribe six mental inputs: the classic four mentioned above, followed by re-
laxation and motor activity, which are two other inputs you will encounter
in this thesis. The accompanying brain responses are specified in terms of
area in the brain where they are most dominant, and whether it is a poten-
tial (a wave), or a rhythm (repeating waves).

P300 When you see (or hear, or feel) something that occurs rarely, and
that is relevant to what you are currently doing, we can observe a spe-
cific wave in your brain activity [21]. As it is related to some specific event,
this wave is called an Event Related Potential (ERP). This positive wave oc-

A P300 potential.
4 Other points of view could include how intuitive the user task can be matched to a system

response. Imagining to move your right hand to move an object to the right is more logical
than having to imagine moving your tongue to move the object. Another important aspect is
howmuch effort it takes the user to provide this kind of input. See Chapter 3 for an experiment
on this topic. But currently, themain criterion for selecting brain-based inputs is howwell they
can be detected.



2 . 4 m e n t a l i n p u t 1 5

Frontal
Parietal

Occipital

Temporal

F i g u r e 4 : A side view of the brain, showing the four main lobes of the cerebral
cortex: frontal, parietal, temporal, and occipital. These lobes are roughly
related to planning and motivation, integration of sensory information,
sound and verbal memory, and sight, respectively.

curs with a delay of around 300 milliseconds, hence the name ‘P300’, and is
strongest in the parietal lobe (center back on the head, see Figure 4). Cur-
rently, this input is mostly used in brain-based spelling applications, where
you can select characters from a matrix by concentrating on the one you
want to type, andmentally counting each time this character is highlighted

A P300 speller matrix.(making it task-relevant) [23]. See Chapter 5 for a more elaborate descrip-
tion and example of such a P300 speller.

SSEP Steady-State Evoked Potentials (SSEP) happen when you focus on
a flickering image, listen to modulated sound (that repeatedly toggles on
and off), or feel some vibration. When you observe a change, your brain
responds. When this change occurs at a specific frequency, we can observe

SSEP base frequency
peak and harmonics.

this frequency and its harmonics in your brain [24]. Depending on the sense
in question, the frequency can be observed in different areas of the brain.
Steady-state visually-evoked potentials (SSVEPs) appear in the occipital lobe
(see Figure 4). Most-often this is used to select an option on screen. Each
option flickers at its own frequency, and you concentrate on the one you
want to select.

SCP Slow Cortical Potentials (SCPs) is the name for a group of slow mov-
ing potentials mostly observed in the frontal and central parts of the cor-
tex [25]. In BCIs, often the user task is “preparation of movement”, to trig-
ger the so-called Bereitschaftspotential [26]. One can, for example, imagine

A positive slow
cortical potential.

preparing to shoot an arrow with a bow in order to cause a negative brain
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signal shift [27]. As opposed to P300 and SSVEP, this input requires exten-
sive user training.

MI MI stands for Motor Imagery. It is the only one of these mental tasks
that is not named in terms of the brain response, but for the task the user
has to execute.Motor imagery can actually be detected both frompotentials

The mu rhythm. (the aforementionedBereitschaftspotential), and fromspecific rhythms (the
mu rhythm in the alpha range, and beta rhythms) in the sensorimotor cor-
tex (see Figure 5) [28]. The basis for thismental task is thatwhenwe imagine
a certain movement, this results in similar activity in the brain as actually
executing the movement. Popular body parts for this task are hands, feet,
and tongue, as they are represented by relatively large parts of the brain,
making them more easy to detect.

Mental input tasks can be subdivided according to various characteristics,
for example whether it requires user training (do you need to learn how to
execute the task, or does it come naturally or automatically?), system train-
ing (does the system need to learn to recognize you specifically, or is the
response very similar for everyone?), whether it requires conscious, active
input or can be used passively, and whether it requires a stimulus to be pre-
sented to the user (such as the flickering in SSVEP) or can be self-induced
(such as imagining tapping your hands). Related to this distinction between
externally-evoked and self-induced tasks is system-paced versus self-paced
input5, which results in non-stop and intermittent input, respectively. In the
system-paced case, the systemwill only listen for user input during specific
moments. When the input depends on some external stimulus, the moment
of stimulus presentation will happen right before the system listens for in-
put. On a side note, the system using externally-evoked input can poten-
tially provide the stimulation continuously, so the power of input initiation
is put back into the user’s ‘hands’. Input can also be continuous or discrete, so
either a value along some axis (such as a concentration level of 0.8), or one
of a set of predefined class labels (such as concentration ‘high’).

When applying these characteristics to the classic four, we see that P300
and SSEP are stimulus-evoked. MI and SCP are self-induced. MI requires
some user training, as most people will have had no practice with it, but
can extrapolate from their experience with actual movement. SCP requires
extensive user training. It is common to use system training, as generally
this will result in better task recognition, but there is a lot of research into
the development of subject-independent BCIs. All of these inputs generally
require active, conscious action from the user, and are normally used in
a discrete way, the output being either ‘on’ or ‘off’, or a label indicating a
specific selection6

5 System-paced and self-paced is also known as synchronous and asynchronous.
6 Admittedly, this statement is a generalization. For example, for P300-detection to work well,

the user actively counts occurrences of the target. But there is also research into P300-based
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F i g u r e 5 : The sensorimotor-cortex homunculi. The central sulcus (fold) separates the
frontal and parietal lobes (see Figure 4). The ridge on the side of the frontal lobe
is the primarymotor cortex (formotor control), and the ridge on the parietal side
is the somatosensory cortex (for tactile sensations). Together, they are referred
to as the sensorimotor cortex. Both contain a representation of the body, called
a homunculus. The primary motor homunculus is shown here at the back; the
sensory homunculus at the front. The larger the related area, the easier it will
be to detect related brain activity. The hands are therefore a popular target for
BCIs based on motor imagery.
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This thesis features some other mental inputs. In Chapter 3 a whole new
set of mental tasks is designed for a specific set of in-game actions. Below I
will explain one of them, ‘relaxation’, in a bit more detail, as we have also
used this particular mental task in other experiments and in many demon-
strations. In Chapter 7 you will find the task of actual motor activity. Relax-
ation and motor activity are both self-induced, so the task can be initiated
by the user. They are also both related to familiar concepts, so they should
come more naturally, and require minimal user training.

Relaxation Like the previously described ‘classic four’, relaxation has
been thoroughly researched in neuroscience. For the AlphaWoWprototype,
further described in the example at the end of this chapter, I chose the alpha
activity over parietal lobe (see Figure 4) as an indicator of relaxation, as it is

Alpha waves. often described as a correlate for a state of relaxed wakefulness [30]. Alpha
activity is attenuated by attention and mental effort [31, 32]. What makes
this mental input particularly interesting is that it can be used actively and
passively by the user. In practice we observe that the way it is used often
changes within a session.

Motor activity As already mentioned, actual movement results in brain
activations that are similar to imaginary movement (see also Figure 5). The
main differences are that actual motor activity is easier to detect [33, 28],
easier to instruct, and one can observewhat the user is doing. Such a ground
truth is often missing with BCI input.

2 . 5 Examp l e : A l p haWoW

Togive a concrete example of the steps and characteristicsmentioned above,
I will describe one of our BCI prototypes: AlphaWoW. It has been used in re-
search [34, 35], although no experiment details have been included in this
thesis (it would have detracted from the main theme). It has been used in
many demonstrations as well, with as highlight a demo talk at TEDxAms-
terdam in 2009. This prototype is also closely related to the system used in

lie detectors. Obviously a lie detector would not be very useful it would require such a degree
of voluntary participation from the user. Along similar lines, SSEPs can be used as an indicator
of the amount of concentration on a target on-screen. This amount of concentration is then
likely to be passed on as a continuous value, instead of discrete, as we did in our Bacteria Hunt
game [29] for example. However, the statement still holds for most systems. Many of these
characteristics are not inherent in the mental input task per se, but also depend on the way
the input is used in the rest of the system. That being said, certain inputs will be more suitable
for certain types of control. And certain inputs have been used for certain types of control
for so many years, an unconscious, trained prejudice may have been created towards certain
combinations.
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Chapter 3, featuring the same control interface, application, and application
add-on.

AlphaWoW showswhat it would be like to have an intuitive, mental-state-
based control in a role-playing game. In the popular game World of War-
craft® (developed by Blizzard Entertainment, Inc®), you can play a druid.
Druids can shape-shift into animal forms. In this BCI version of the game,
your shape depends on your level of relaxation, see Figures 6 and 7. When
you are relaxed, you are in your normal human form7, but when you get
agitated, you automatically change into a bear.

F i g u r e 6 : BCI control in World of Warcraft®:When the user is relaxed (high pari-
etal alpha activity), the avatar is humanoid. When the user gets agitated
(low parietal alpha activity), the avatar becomes a bear.

Following the processing steps of the online BCI cycle model explained in
the beginning of this chapter (Figure: 2):

User The task for the user here is to either try to stay relaxed, or to get
agitated. Instead of trying to consciously control this, the user can also con-
sider the shape to be simply feedback on their current mental state, and
play the game as best as they can with whatever this state turns out to be at
that moment. So the input can be active or passive, depending on user pref-
erence. In the case of active control, the input is self-induced. When used
passively, one could say that the input is stimulus evoked, as the level of re-
laxation will fluctuate depending on what happens in the game. Whatever
the case, the system listens for input non-stop.

Signal acquisition In the early days of my research, I used the Biosemi
ActiveTwo headset, which is a high-grade EEG set, using cap and gel. Later See Section 2.3.

7 The human form is a night elf, to be exact.
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F i g u r e 7 : Participant playing AlphaWoW: with the Biosemi headset. Mouse and
keyboard are still used for movement, selection, and camera control.

on the system was adjusted to work with the consumer-grade Emotiv EPOC,
which was a lot easier to use and demonstrate.

Pre-processing, feature extraction, translation The amount of pari-
etal activity (in the back of the head) in the alpha frequency band (8–13 Hz)
is used as an indicator of relaxation (see the description of Relaxation input
in the previous section). For this, the BCI first selects the parietal electrode
channels, and computes the absolute alpha-bandpower for each8. To ensure
a normal value distribution, the log of the bandpower values is computed.
The initial indicator value for relaxation is then obtained by taking the sum
of these log bandpower values.

The indicator valuewe have obtained thus farmay still varywidely across
users. Adaptive z-score normalization (subtract the mean, divide by the
standard deviation, with the mean and standard deviation based on recent
observations) forces this indicator in the same range for every user: 95% of
the values should now occur between -2 and +2. This automatically adjusts
the system to the user, and prevents the user from getting stuck in high or
low relaxation for the entire session. For easy interpretation, this value is

8 The relative power would indicate a percentage of the power over all frequency bands com-
bined. Although this can be a convenient way to somewhat normalize the values obtained in
this process, this relative power can fluctuate highly based on the activity in the other bands.
To avoid this, the AlphaWoW system looks solely at the absolute alpha-band power.
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scaled to be in the range from 0 to 1 (from the original -2 to +2 standard
deviations). Anything lower or higher is cut off. We have now arrived at a
value with a user-independent logical meaning: the amount of relaxation.

Control interface Tomake this relaxation value less sensitive to outliers,
a weighted moving average is applied of [0.2, 0.3, 0.5], with the most recent
observation contributing the most. The reduced sensitivity also makes the
system respond slower to intended changes. Such trade-offs are a common
theme in brain-computer interfaces. See Section 6.2 for more examples.

Then this value is passed on to a separate application which translates
the level of relaxation into key presses which are used to communicate with
the proprietary World of Warcraft, as this game is closed off for any other
means of receiving user input. Conditions for certain keys are defined in
terms of both value and duration thresholds (dwell times). Chapters 5 and 6
will discuss post-processing methods such as the moving average and dwell
times in more detail.

Application World of Warcraft was extended with a small add-on which
would provide the user with some basic feedback on the currently-observed
level of relaxation. This feedback bar animates towards eachnewly observed
relaxation level, instead of simply jumping to it. The point of this feature is
to make the interface match user expectations better.

Aside from relaxation-level feedback, there is also feedback at command-
level when the avatar is about to shape-shift. When the user crosses the
low-relaxation threshold and is about to change to bear, the screen flashes
red. When the dwell time is exceeded, the shape-shifting actually occurs.
Similarly, when crossing the high-relaxation threshold and the user is about
to change to human form, the screen flashes blue. The shape-shifting itself,
and the game, are all part of the basic World of Warcraft application.
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Key po i nt s

• BCIs and games are a good combination. BCIs can increase the sense of
immersion, while games provide a motivating environment. Besides,
games offer a large target audience, with eager early adopters.

• Human-computer interaction occurs in a loop. Changes in any of the
interface processing steps are likely to affect the input from the user.

• Post-processing translates the initial interpretation of the user input
(by a classifier, for example) into semantic control commands that
make sense in the context of the application.

• Brain-computer interfaces try to do the equivalent of determining
what happens on the field in a soccer game by standing outside the
stadium listening to the cheers of the crowd. It is not mind-reading.
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3 What us e r s want

Current brain-computer interface research focuses on detection performance and
bit rates. However, this is only one part of what is important to the user. Other as-
pects of usability and the user experience may be just as influential. In this chap-
ter I apply the user-centred approach from human-computer interaction, first to
discover new potential mental tasks which might be used as an input for brain-
computer interfaces, and second to investigate what people consider important as-
pects of these mental tasks.

The research area of brain-computer interfaces (BCI) traditionally focused
on providing fully-paralysed people with a new output channel to enable
them to interact with the outside world, despite their handicap. As the tech-
nology improves, the question arises whether BCIs could also be beneficial
for healthy users, for example by improving quality of life or by providing
private, hands-free interaction [2, 3].

Current BCI research concentrates on improving the recognition accu-
racy and speed, which are two important usability factors. But in order for
this technology to be accepted by the general public, other factors of usabil-
ity and user experience have to be taken into account as well [4, 5, 6].

A couple of other BCI research labs are starting to take note of user-
centred design methods as well, such as including an informed lead user
throughout the development of a BCI system [7] and evaluating systems for
their workload and user satisfaction [8].

In this chapter I apply user-centred development principles from the area
of human-computer interaction to BCI design and evaluation. In Section
3.1 I use a user-centred design method to find new mental tasks for shape-
shifting in the popular massively-multiplayer online role-playing game
World of Warcraft® (developed by Blizzard Entertainment, Inc®). Within the
large group of healthy users, gamers are an interesting target group. Fed
by a hunger for novelty and challenges, gamers are often early adopters of
new paradigms [9]. Besides that, it is suggested that users will be able to
stay motivated and focused for longer periods if the BCI experiment can be
presented in a game format [10].

This chapter has been presented orally at MMM2011 and as: D. Plass-Oude Bos, M. Poel, and A.
Nijholt. “A study in user-centered design and evaluation of mental tasks for BCI.” In: Advances
in Multimedia Modeling (2011), pp. 122–134.
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Afterwards, in Section 3.2 and 3.3 the use of the selected mental tasks are
evaluated by users. The main research questions I address are: Which men-
tal tasks do the users prefer, and why? How is this preference influenced by
the detection performance of the system?

3 . 1 U s e r - c e ntr e d d e s i g n

One of the problems facing BCI research is the uncovering of usable men-
tal tasks that trigger detectable brain activity. The tasks (by convention
often indicated by the name of the corresponding brain activity) that are
currently most popular are: slow cortical potentials, imaginary movement,
P300, and steady-state visually-evoked potentials [11, 12]. Users regularlySee Section 2.4 for

more on these
specific mental tasks.

indicate that these tasks are either too slow, nonintuitive, cumbersome, or
just annoying to use for control BCIs [13, 9].

Current commercial applications are a lot more complex and offer
many more interaction possibilities than applications used in BCI research.
Whereas current game controllers have over twelve dimensions of input,
BCI games are generally limited to one or two-dimensional controls. Also,
the mental tasks that are available are limited in their applicability for in-
tuitive interaction. New mental tasks are needed that could be mapped in
an intuitive manner with the system response1.

Oneway to discovermental tasks that are suitable fromauser perspective
is to simply ask the userwhat theywould like to do to trigger certain actions.
In World of Warcraft®, the user can play an elf druid who can shape-shift
into animal forms. As an elf, the player can cast spells to attack or to heal.
When in bear form, the player can no longer use most spells, but is stronger
and better protected against direct attacks, which is good for close combat.

In an open interview, I asked four World of Warcraft® players of varying
expertise and ages which mental tasks they would prefer to use to shape-
shift from the initial elf form to bear, and back again. The participants were
not informed about the limits of current BCI systems, but most people did
need an introduction to start thinking about tasks that would have amental
component. They were asked to think of using the action in the game, and

1 If ‘intuitive’ as a definition is reduced to ‘familiar’ [14], as in: “known from other previous in-
teractions”, then it would be easy to say it is impossible: our brains never interact with our
environment directly, so how could we be familiar with it? Brain-computer interaction is not
natural in the way that gesture-based or speech-based interaction can be, for example. On the
other hand, as the brain is a key player in many of our interactions, there should definitely be
suitable opportunities for familiar interaction. Perhaps the four themes of reality-based inter-
action can provide inspiration on how to minimize the gulfs of execution and evaluation [15,
16]. But as brain-computer interaction has no direct reality-based equivalent, we may need
something else entirely, as Wigdor and Wixon recommend in their book on natural user inter-
faces: “Create an experience that is authentic to the medium— do not start by trying to mimic
the real world or anything else.”[17]. Section 8.2 describes a potential direction for future re-
search.
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what it meant to them, what it meant to their character in the game, what
they thought about when doing it, what they thought when they wanted to
use the action, and then to come up with mental tasks that would fit nat-
urally with their gameplay. The ideas that the players came up with can
be grouped into three categories. To be able to conduct the user evalua-
tion (see Section 3.2), these three categories needed to be translated into
concrete mental tasks. Each category consists of a task, and its reverse, to
accommodate the shape-shifting action in the directions of both bear and
elf form.

1. Inner speech: recite amental spell to change into one form or the other.
The texts of spells subsequently used were derived from expressions
already used in the game world. The user had to mentally recite “I
call upon the great bear spirit” to change to bear. “Let the balance be
restored” was the expression used to change back to elf form.

2. Association: think about or feel like the form you want to become. Con-
cretely, this means the user had to feel like a bear to change into a
bear, and to feel like an elf to change into an elf.

3. Mental state: automatically change into a bear when the situation de-
mands it. When you are attacked, the resulting stress could function
as a trigger. For the next step of this research, this had to be translated
into a task that the users could also perform consciously. To change
to bear form the users had to make themselves feel stressed; to shift
into elf form, relaxed.

3 . 2 U s e r eva l uat i o n metho d o l o gy

The goal of the user evaluation was to answer the following question in this
game context: Which mental tasks do the users prefer, and why? As it was
difficult to predict the influence of the probably not-very-good detection of
these novelmental tasks, the participantswere split up into twogroups. One
groupwould use themental tasks with an actual BCI, however the detection
performance would turn out to be. The other group would pretend to use a
BCI with perfect recognition. This split allows further investigation into the
effects of the detection performance on the user preference for the selected
mental tasks.

Part i c i p a nts

Fourteen healthy participants (average age 27, ranging from 15 to 56; four
female) voluntarily took part in this experiment after signing an informed
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consent form. All but one of the participants were right-handed. Highest
finished education ranged from elementary school to a Master’s degree. Ex-
perience with the applicationWorld of Warcraft® ranged from “I never play
any games” to “I raid daily withmy level 80 druid”. Three participants were
actively playing on a weekly basis.

C on d i t i o n s

The general methodology to answer the research questions was as follows.
In order to measure the influence of the detection performance of the sys-
tem the participants were divided in two groups, a so-called “real-BCI” and
“utopia-BCI” group. The group that playedWorld of Warcraft® with “utopia-
BCI” decided for themselves whether they performed the mental task cor-
rectly, and pressed the button to shape-shift when they had. In this way a
BCI systemwith 100% detection performance (a utopia) was simulated2. The
group that played World of Warcraft® with “real-BCI” actually controlled
their shape-shifting action with their mental tasks, at least insofar as the
system could detect it.

The participants came in for experiments once a week for five weeks, in
order to track potential changes over time. During an experiment, for each
pair of mental tasks, the participant underwent a training and game ses-
sion and filled in questionnaires to evaluate the user experience. The three
different categories of mental tasks were tested in random order. Each cat-
egory consisted of two mental tasks: one to change to bear, and another to
change to elf.

To summarize: the measurements were within-subject for the different
mental task categories, but between-subject for the “utopia-BCI” and “real-
BCI” conditions. The following sections explain each part in more detail.

Week ly S e s s i o n s an d Measur ements

The participants participated in five experiments, lasting about two hours
each, over five weeks. The mental tasks, mentioned above, were evaluated
in random order to eliminate any potential order effects, for example, due
to fatigue or user learning.

For each task pair, the participant underwent a training session. The pur-
pose of the training session was manifold: (1) it gathered clean data to eval-
uate the recognizability of the brain activity related to the mental tasks,
(2) the user was trained in performing the mental tasks, (3) the system was

2 Interesting side note: although 100% detection performance might be optimal from a func-
tional point of view, it does not always create the optimal user experience. See, for example,
Laar et al. [18].



3 . 2 u s e r e v a l u a t i o n m e t h o d o l o g y 3 3

trained for those participantswho played the gamewith the real BCI system,
and (4) the user experience could be evaluated outside the game context.

A training session consisted of two sets of trials separated by a break to al-
low the participant to rest. Each set started with four watch-only trials (two
per mental task), followed by 24 do-task trials (twelve per mental task). The
trial sequence (see Figure 8) involved five secondswatching the character in
their start form, followed by two seconds during which the shape-shifting
task was presented. After this the participant had ten seconds to perform
the mental task repeatedly until the time was up, or just watch if it was a
watch-only trial. At the end of these ten seconds, the participant saw the
character transform. The character in the videos was viewed from the back,
similar to the way the participant would see the avatar in the game.

F i g u r e 8 : Training session trial sequence: first the character is shown in their
start form, then the task is presented, afterwhich there is a period during
which this task can be performed. At the end the animation for the shape-
shift is shown.

During thewatch-only trials, the participant saw exactlywhat theywould
see during the do-task trials, but they were asked only to watch the se-
quence. The EEG data from these trials were used as a baseline.

At the end of the training session, the participant was asked to fill out
forms to evaluate the user experience. The user experience questionnaire
was loosely based on the Game Experience Questionnaire [19]. It contained
statements on which the participants had to indicate their amount of agree-
ment on a five-point Likert scale, for example: “I could perform these men-
tal tasks easily”, “It was tiring to use these mental tasks”, and “It was fun to
use thesemental tasks”. The statementswere categorized into the following
groups: whether the task was easy, doable, fun, intuitive, tiring to execute,
and whether the mapping to the in-game action made sense or not.

After the training session, the participant had roughly eight minutes to
try the set of mental tasks in the game environment. The first experiment
consisted only of a training session. For weeks two to four, the participants
were split up into the “real-BCI” and “utopia-BCI” group. Groups were fixed
for the total experiment. In the last week all participants followed a training
and played the game with the real BCI system.

The “real-BCI” group received feedback on the recognition of their men-
tal tasks in the form of an orange bar in the game (see Figure 9).

The smaller the bar, the more the system had detected the mental task
related to elf form. The larger, the more the system had interpreted the
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F i g u r e 9 : Orange feedback bar with thresholds. The user has to go below 0.3 to
change to elf, and above 0.7 to change to bear. In between no action is
performed.

brain activity as related to bear form. When the thresholds were crossed
the shape-shift action was executed automatically.

The “utopia-BCI” participants had to interact with a BCI system with (a

The BCI processing
steps of this system.

near) 100% performance. Unfortunately this was not technically feasible.
One option was to use the Wizard of Oz technique, where a human plays
the role of the detection system [20]. This ‘wizard’ observes the user, and
presses the right buttons when the user task is performed correctly. With
mental tasks, however, the wizard would have no way of knowing what the
user is doing as there is no external expression of the task. The only option
left to simulate a perfect system is to let the participants evaluate them-
selves whether or not they had performed the task correctly. Then they
pressed the shape-shift button in the game manually.

At the end of the game session, the user experience questionnaire was
repeated, to determine potential differences between the training and game
sessions. The game session questionnaire contained an extra question to
determine the perceived detection performance of the mental tasks.

At the end of the total experiment for theweek, the participants filled out
a final form concerning the experiment as a whole. The participants were
asked to put the mental tasks in order of preference, and to indicate why
they choose this particular ordering.

E E G Ana lys i s

The EEG analysis pipeline, programmed in Python, was kept very general, as
Section 2.3 explains
EEG, and Section 2.2
discusses common

analysis steps in BCIs.

there was no certainty about how to detect the selected mental tasks. Com-
mon Average Reference was used as a spatial filter, in order to improve the
signal-to-noise ratio [21]. The bandpass filter was set to a very wide range
of 1–80Hz. The data gathered during the training session was sliced in 10-
second windows. These samples were then whitened [22], and the variance
of each component was computed as an indication of the power in the win-
dow. A support vectormachines (SVM) classifier provided different weights
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for the power of each EEG component. The data from the training session
was used to determine the whitening matrix and train the SVM.

Mapp i n g

TheBCI controlwasmademore robust to artefactswith twopost-processing
methods. These methods affect the mapping of classification results to in-
game actions. A short dwelling was required to trigger the shape-shift, so
it would not be activated by quick peaks in power. Secondly, hysteresis was
applied: the use of two thresholds in order to reduce the effects of quick os-
cillations. The threshold that needed to be crossed to change into a bearwas
higher than the threshold required to revert back to elf form, see Figure 9.
In between these two thresholds, the avatar remained in the most-recent
form. Hysteresis has a stabilizing effect which is also known as debouncing.
For an overview of various post-processing methods, see Chapter 6.

3 . 3 R e s u lts

Menta l task pr e f e r e n c e

In the post-experiment questionnaire, the participants were asked to list
the mental tasks in order of preference. The place in this list was used as a
preference score, which was then rescaled and inverted to match the user
experience questionnaire values. As a result, the preference values range
from 1 to 5, where 5 indicates first choice, 1 is the least preferable task, and
3.0 is interpreted as a neutral disposition.

Sixty-nine measurements were obtained from 14 participants over five
weeks. One week one participant had to leave early and could not fill out
his preference questionnaire.

On average, there was a general preference for the association tasks, and
the mental state seemed to be disliked the most. But this paints a very
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There were large
differences between
the inner speech
andmental state
preference scores for
the Utopia and Real
BCI conditions.

simplistic image, as there are large differences between the “real-BCI” and
“utopia-BCI” groups.

For a better understanding of the effects of the different aspects, Fig-
ure 10 shows the preference and user experience scores for each of the
three mental task pairs, separated for the two participant groups. Whereas
for the “real-BCI” group the mental state tasks are most liked, the opposite
is true for the “Utopia BCI” group, where they are most disliked. Similarly,
The “utopia-BCI” group most preferred inner speech, which was least pre-
ferred by the “real-BCI” group. Because of these large differences, these two
groups need to be investigated as two separate conditions.
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F i g u r e 1 0 : User experience, preference, and perceived performance scores for
the “utopia-BCI” and “real-BCI” groups, separate for the three mental
task pairs, averaged for weeks 2 to 4. The plot shows the means with
95% confidence intervals, and is annotated with significant differences
between task pairs (association, inner speech, mental state; with a line
with star above the two pairs). Significant differences between condi-
tions (“utopia-BCI”, “real-BCI”) are indicated with a star above the cor-
responding bars in both the top and bottom plots . The black horizontal
line at a Likert scale value of 3.0 indicates the neutral position.
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Task r e c o gn i t i o n an d task pr e f e r e n c e

It is not possible to completely separate the influence of the recognition
performance from other aspects that differ between the participant groups.
But based on the user experience scores, recognition perception scores, and
the words the participants used to describe their reasoning for their pref-
erence, it is possible to explain the discrepancy in preference between the
two conditions and get an idea of the influence of recognition performance.

Although the inner speech tasks were rated highly positive (doable, easy,
intuitive) by both groups, the task recognition by the system had a big im-
pact. Despite the positive ratings overall, it is the least-preferred task pair
for the “real-BCI” participants. The association tasks are valued mostly for
their intuitiveness and the mapping with the in-game task, by the “utopia-
BCI” group at least. This time, not only the preference scores, but aspects
of the user experience (ease and intuitiveness) are significantly affected by
the recognition as well. So far, bad task recognition resulted in low prefer-
ence scores. For mental state we see that good recognition can also do the
opposite. This task pair scored low across the board by both groups, yet it
was preferred by the “real-BCI” group.

Based on these results, it seems that the recognition performance has
a very strong influence on the user preference, as it is the most important
consideration for the “real-BCI” group task preference. For the “utopia-BCI”
group different considerations emerge, where the ease of execution seems
to play a dominant role.

This view is confirmed by the words the participants used to describe
their preference ranking, shown in Figure 11. Through the method of con-
tent analysis, the words were categorized, and the number of occurrences
within each category was used as an indication of how important that cate-
gory was to the reasoning [23]. To reduce the number of categories, words
that indicated a similar concept were clustered into one category. For ex-
ample, difficult was combined with easy. Where applicable, the key terms
from the user experience questionnaire were used to indicate the word cat-
egories.

The “real-BCI” groupmostly used the word recognition performance (n =

15), more than twice as often as any other word category (n <= 7). The
“Utopia BCI” groupmostly referred to the ease of executing the task (n = 12,
where n <= 5 for the other word categories). Other issues that were often
mentioned were feels good, concentration, fun and tiring.

On a side note, the participants appeared to be optimistic about the sys-
tem recognition. A score of 1 on the Likert scale would have indicated no
recognition at all, and even though the recognition for inner speech, for
example, would have been minimal, the average rating is still above 2 (see
Figure 10). The participants did feel that the system recognized the mental
state task pair, and this perceived recognition increased over time.
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F i g u r e 1 1 : Counts for the categories of words used by the participants to
describe the reasoning behind their preference ranking, total for
weeks 2 to 4. The bars for the “Utopia BCI” are on top; “Real BCI” is below.
Categories related to the questionnaire are grouped on the left. In the
middle are new categories that were not known from the questionnaire,
but still mentioned multiple times. On the right are new categories that
were only mentioned once.
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doable easy fun intuit mapp concnt tiring recgn

Utopia r -,482 -,542 -,478 -,384 -,395 ,273 ,254
p ,000 ,000 ,000 ,002 ,002 ,032 ,047

Real r -,218 -,293 -,294 ,057 ,079 ,246 ,137 -,316
p ,095 ,023 ,023 ,665 ,550 ,058 ,295 ,014

All r -,360 -,415 -,391 -,203 -,190 ,259 ,199 -,316
p ,000 ,000 ,000 ,025 ,036 ,004 ,028 ,014

Tab l e 1 : Pearson correlation coefficients and p-values for the correlation of user ex-
perience components and perceived recognition rate with the preference
scores for the mental task pairs. Significance annotation: p <= 0, 005 in bold.

Task pr e f e r e n c e an d u s e r exp e r i e n c e

Given the fact that participants indicated task recognition and ease to be the
most important considerations for their preference, do these aspects from
the user experience questionnaire also show a correlation to the preference
scores?

Weeks 1 and 5were excluded from this analysis as both groups performed
the tasks in the same conditions in these weeks (“Utopia” in week 1 and
“Real” in week 5). Therefore the number of samples for the correlation tests
are 63 (3 weeks, 3 task pairs, 7 participants), except for one casewhere there
are somemissing samples due to a participant having to leave early. For the
correlation tests with the two conditions (“Real” and “Utopia”) combined,
there are twice the number of samples. There are no perceived recognition
scores for the “utopia-BCI” group.

For the “utopia-BCI” group, the expected correlations with the ease-
related aspects doable and easywere found, as well as correlations withmost
of the other aspects. After correction for multiple tests, the correlations
with concentration and tiring are not significant.

There were no significant correlations of preference with any of the user
experience aspects for the “real-BCI” group, but the most relevant correla-
tion was with the perceived recognition performance by the system, which is
as expected. Looking at the conditions combined, the most significant cor-
relations are for doable, easy, and fun.

The relation between preference and recognition performance is not that
apparent when investigating this correlation. Yet, the correlations do show
the importance of easy task execution, expressed in how easy andhow doable
it is to perform the task. They also show that other aspects can be important
as well, such as fun, how intuitive it is, and themapping to the in-game action.
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3 . 4 D i s c u s s i o n an d c on c l u s i o n s

When evaluating BCIs, current research focuses strongly on task recogni-
tion performance, speed, and the derivative: bit rates. Human-computer in-
teraction research shows that for a user to accept and value this newmeans
of interaction other aspects may be important as well, generally summa-
rized as “usability and user experience”.

Historically, mental tasks for BCI control are based on neuromechanisms
discovered in neuroscientific research, and are selected for their discrim-
inability, to ensure that a BCI can recognize the task being performed based
on the user’s brain activity. For this research, I involved potential users in
the design process of determining which mental tasks to use for certain
actions within the application. This resulted in three categories of men-
tal tasks that are not listed among the most frequently-used tasks in cur-
rent BCI applications: mental state, inner speech, and association. Such a user-
centred approach allows us to go beyond the task recognition criterion and
look at other aspects which might also be important to users.

These three pairs of mental tasks were then evaluated in a prototype for
their resulting user experience. Asking the participants about their experi-
ence yielded new insights into what potential users liked and disliked about
these particular mental tasks for this BCI system, and why.

In the context of this experiment, the task recognition by the system
was so important that its contribution to the users’ mental task preference
overshadowed all othermental task characteristics for the participantswho
played with actual BCI detection. Only when the influence of this aspect is
removed, by having participants pretend they are using a perfect BCI, do
other aspects come to the fore.

Overall, user preference for mental tasks seems to be based on (highest
influence first) accuracy of task recognition by the system, ease of performing
themental task, and lastly by factors such as fun, intuitiveness, and suitability
for the task. This is confirmed by the words participants used to describe
their preference as well as correlations with items from the user experience
questionnaire filled out by the participants.

L im i tat i o n s

It is important to keep in mind that these findings come from a limited con-
text: the shape-shifting task inWorld ofWarcraft®.Whether they generalize
to other contexts requires further investigation. It is also not possible to see
task preference independent of the in-game action as they are inherently
linked.

The participants in the “utopia-BCI” group had to evaluate their execu-
tion of themental tasks themselves. Howwell people can evaluate their own



3 . 4 d i s c u s s i o n a n d c o n c l u s i o n s 4 1

mental task execution, andhow thismay affect their experience is unknown.
There were behavioural indications that the participants did perform their
mental tasks seriously. As an additional motivator, their brain activity was
recorded, just as with the “real-BCI” participants. These recordings cannot
be used to validate task execution as the execution and resulting brain re-
sponse may be different for the various participants. Besides, it is unsure
whether there are clear differences between the brain signals for these task
pairs to begin with3.

The words in the descriptions of the participants describing the reasons
for their preference have been grouped with the questionnaire categories
as a guideline where applicable. Other categories could have been possible.
For example, the ease of executing a mental task is actually composed of
various aspects. Merriam-Webster defines ease as “the state of being com-
fortable”, and provides a number of reasons for this experience, such as
“lack of difficulty”, “effortlessness”, and “naturalness” [24]. In other words,
a mental task can be easy to do because you understand what you are ex-
pected to do (lack of difficulty), because of familiarity (naturalness), or be-
cause it requires little concentration to execute (effort). These reasons are
addressed in the user experience questionnaire in slightly different words,
such as “intuitive” and “tiring”.

R e c ommendat i o n s

The fact that the recognition by the systemwas indicated to be so important
to the participants in this experiment seems to validate the current focus
of BCI research on speed and accuracy. The importance of good control had
already been well established for disabled end-users (for example in [25]),
but is now also confirmed for healthy users.

Over time, speed and accuracy of detection can be improved with better
hardware and analysis methods. As a result, other aspects of user experi-
ence will become more prominent, such as the ease of performing the men-
tal task. In the meantime, it is important to be aware of this distortion of
various user experience measurements as a result of the lack of accurate
task recognition. Faking well-functioning BCI systems could allow us to see
what else we should consider when developing such systems.

When designing and evaluating systems it would be beneficial to take the
usability and user experience into account, for patients as well as healthy
users. For more information on evaluating the user experience in BCI sys-

The mental state task
pair was somewhat
discriminable in
terms of mutual
information, but only
for the real BCI group
(coloured) and only
based on muscle
activity, not the
brain.

tems, and some examples of how the user experience can affect BCI perfor-
mance and vice versa, see van de Laar et al. [26].

3 I did conduct an unpublished analysis for the mental state task pair, which according to the
participants was best recognized. While very limited, there seemed to be some information
in there, but only for the real BCI group and only in the higher frequencies where we mainly
observe muscle activity, not brain activity.
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As this experiment has been conducted with healthy, able-bodied partic-
ipants, it would be interesting to conduct a similar study with users of as-
sistive technology (AT). I would expect the results to be quite similar: good
task recognition and easy task execution are likely to be the two most im-
portant aspects for that user group as well. Depending on the underlying
reason for the need for AT, sustaining concentration for a longer period
of time might be problematic. While the general population requires these
characteristics because otherwise they will simply use another interface, in
the case of AT users, good task recognition and easy task execution might
be a requirement for them to be able to use the interface at all.

The participants appeared to be optimistic about the task recognition by
the system. Chapter 4 will describe the investigation into this perception of
control.

Key po i nt s

• The field of human-computer interaction has knowledge and meth-
ods to offer for developing systems that are accepted and valued by
users, which are valuable for brain-computer interfaces as well.

• User-centred design offers a new approach for trying to find newmen-
tal tasks for BCI control, which allows us to look beyond recognition
performance.

• Task recognition by the system appears to be the most important fac-
tor for mental task preference by users. However, the ease of task ex-
ecution for the user is also highly influential.

• Perceived task recognition performance can significantly affect other
user experience measurements. As long as the task recognition is at
a critical level, it may be necessary to fake good recognition in order
to be able to investigate other aspects of the user experience.

• Participants appeared to be on the optimistic side about the task recog-
nition by the system.
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P e r c e pt i o n o f

c ontro l

Brain-computer interfaces do not provide perfect recognition of user input (Chap-
ters 1 and 2). However, good task recognition is precisely what users want most
(Chapter 3). How well can users really assess their level of control? And how much
control do they need? In this chapter we investigate the relation between actual and
perceived control.

Like other input modalities based on observations of the body, BCIs do not
provide perfect recognition of what the user is trying to convey. This can be See Chapters 1 and 2.
problematic, as input is the basis for usable systems in general. In the pre-
vious chapter we saw that good recognition was the most important input See Chapter 3.
task characteristic for BCI users.

Most of the studies in this thesis are focused on game applications specif-
ically. Gamers are a large target audience, and many of them are early See Chapter 2.
adopters [2]. Learning to provide brain-based input can be integrated into
the game as part of the challenge [3]. Games can also help experiment par-
ticipants to stay motivated and focused for longer periods [4].

We have done many demonstrations and experiments in which people
could try our brain-computer interface (BCI) games. Sometimes people seem
to overestimate their level of control, and sometimes to underestimate it.
This made us wonder: how well can people assess how much control they
really have? Additionally, what would be the minimum amount of control
necessary to operate a given system? In this study, this second question has
been limited to: What is the minimum amount of control necessary so peo-
ple do not give up playing the game.

Previous analysis of data from this experiment has been published in [5],
which posed that perfect control may not always result in an optimal user
experience. People actually experienced more fun in the experiment game
when the control was not perfect. My focus here is the perception of control.
Additionally, I investigate how much control might be necessary so users
do not give up.

This chapter has been published as: D. Plass-Oude Bos et al. “Perception and manipulation of
game control.” In: Proceedings 6th International Conference on Intelligent Technologies for Interactive
Entertainment (INTETAIN 2014). Ed. by D. Reidsma. Vol. 136. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Verlag,
Berlin, 2014, pp. 57–66. It was presented orally at INTETAIN 2014, where it received the best
paper award.
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4 . 1 B a ckgroun d and r e lat e d work

Perception of control There are many reasons to suspect that there is
no simple linear relationship between the perception of control and how
much control people actually have. People overestimate their influence on
things with a positive outcome, and underestimate their effect on negative
outcomes [6, 7]. Even when people have no control at all, they may experi-
ence ‘the illusion of control’ [8]. Another factor affecting people’s conscious
perception is how they can rationalize their unconscious behaviours [9].

Additionally, people assess more beautiful systems as being more usable,
even if they are not [10]. Norman takes this a step further, arguing that
pleasing things (not necessarily through beauty alone) actually work bet-
ter, as the user is more open to the interaction [11]. One pleasing aspect
might be using a novel input modality [12]. People appear to be more le-
nient towards mistakes made by a brain-computer interface than towards
errors made with a non-BCI input (in this case, a variation on mouse selec-
tion) [12]. Formore on how the user experiencemay affect BCI performance,
see [13].

Controlled simulation of uncertain control Brain-computer interfaces
would not allow us to control the amount of user control over the full range
from having no control at all to full control. So we needed a substitute
where we could be certain that the user has the level of control that we
wanted to provide.We looked at various alternatives: simulating imaginary-
movement-based BCI input [14], manipulating mouse input [15], or issuing
incorrect commands at selection level [16].

Carlson, et al. evaluated the effect of shared control (with an AI) on driv-
ing a BCI-controlled wheelchair [17] using another alternative. Tomake the
evaluation less time-consuming, they decided not to use actual BCI control,
but to simulate it with input transformation matrices. Such a matrix pro-
vides a probability for each input to transform into something else, which
can then be used to actually transform input actions into other actions with
different system responses. Then an ‘expert driver’ would pretend to control
thewheelchair with a brain-computer interface, by simply pressing buttons
on a keyboard. In the end, we opted for these input transformation matrices.
Its simplicity allows us to assess only the control aspect of the input. Addi-
tionally, it is easier to implement and adjust.

Minimum amount of control It has been said that for BCIs a selection
accuracy of 70% is acceptable [18]. Another BCI research group determined
theminimumacceptable level of accuracy to be 77% for four input classes by
lowering the selection accuracy step-by-step until the participant indicated
meaningful navigation in the applicationmenu had become impossible [16].
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Uncertainty in applications There can be uncertainty about whether
the input will be interpreted correcty by the input device, but uncertainty
can also be purposefully introduced in an application [19]. For example, we
observed that uncertainty can increase the sense of fun [5].

4 . 2 M etho d s

Ex p er im ent proto c o l

To reach a large number of participants and gather enough data for each
level of control, the experiment was run from a web browser, so people
could participate from anywhere. Social media was actively used to recruit
participants.

The input was provided by keyboard. To manipulate the amount of con-
trol, an input transformation matrix would be randomly selected from the
database for each run. This randomization had two benefits: (1) It allowed
for a distribution of samples over the different levels of control, and (2) if
the previous experienced level of control affects the experience of the cur-
rent level, this avoids order effects in the results.

Each run started with an explanation on how to play the game. During a
run, the player tried to guide a laboratory test hamster to freedom through
four levels (Figure 12)1. After one minute, the player could decide to skip
the rest of the run. At the end of each run, a questionnaire would pop up,
after which the player would be encouraged to play another round.

Man i p u l at i o n o f th e i n p ut

In this game, the amount of control is varied by manipulating the keyboard
input, which consists of the four directional arrows. If the user takes no ac-
tion, a ‘no action’ input is generated, also known as ‘idle state’, ‘no control’,
or ‘no operation’.

This input is transformed by a matrix which dictates probabilities for
each system response (what the hamster you control ends up doing) given a
particular provided input. The probabilities for a non-matching output are
set equal for all non-matching outputs. The amount of control is thus de-
fined by the probability for correct classification (the hamster obeys), which
is equal to the accuracy level.

We generated 15 input transformation matrices, evenly spread out over
the whole possible range of mutual information. Mutual information is de-

1 The software and additional notes can be found on the following website: www.dannyplass.
nl/control

www.dannyplass.nl/control
www.dannyplass.nl/control
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F i g u r e 1 2 : A screenshot of the game used in the experiment.

fined as the amount of information one sequence provides over another, in
bits2. In this case, the amount of information that is being shared between
the actual input, and the transformed inputwith a lower accuracy. Thismea-
suremay be a little less intuitive to interpret compared to accuracy, but it is
more suitable, as it is comparable for different numbers of classes and differ-
ent prior probabilities [20]. The relationship between mutual information
and accuracy is logarithmic.

To determine the mutual information I(X; Y) for a given input transfor-
mation matrix concerning inputs X and responses Y, we assume a uniform
probability function over the input space (verification in the Results sec-
tion). This probability function is also known as the marginal probability
function p(x) for x. The mutual information is then computed as follows:

I(X; Y) =
∑
x∈X

∑
y∈Y

p(x,y)log2
p(x,y)
p(x)p(y)

where p(x) = 1

n
, with n the number of input types

2 Say there is no relation between the actual input and the transformed input, then the mutual
information is 0. Knowing one does not provide any information about the other. If the actual
input completely determines the transformed input (there is a direct translation), then the
amount of information in the actual input is the same as the amount of information in the
transformed input, and this is the same as the amount of information both sequences provide
over each other: the entropy of the input sequence. The entropy is the average amount of
information based on the number of different tokens in the sequence and their respective
probability distributions.
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Data co l l e ct i o n

The questionnaire consisted of 6 visual analogue scale (VAS) questions [21],
and 3 open questions: age, gender, and a field for remarks. The VAS scales
went from 0 to 100, and were initialized at 50. For this analysis, the two
questions of importance are those related to control: “I had the feeling that
the hamster did what I wanted it to do” and “I had the feeling the computer was
following my commands”. Additionally, detailed action logs were maintained
for each participant, containing all keyboard inputs and the resulting trans-
formed actions, as well as starting, skipping, finishing, pausing, and resum-
ing levels.

Part i c i p a nts

We could identify 87 individuals based on filled out gender-age answer pairs
in combination with the IP addresses. Of these individuals 39% was male,
29% female, and 28% unknown, with an average (provided) age of 24.9 years
(in the range of 10-58, with a standard deviation of 7.5).

For the main analysis concerning the perception of control, we excluded
runs for which not all the VAS questions were filled out. This filtering re-
sulted in 211 runs, with at least 9 runs and at most 22 runs per level of con-
trol.

To determine when people gave up, we looked at the action logs for all
started runs, and analysed the final entries for each run, which gives an
indication of how it was ended. This resulted in the analysis of 465 runs.

4 . 3 R e s u lts

The two main questions are: (1) How well can people assess their level of
control, and (2) How much control is sufficient so users do not give up?

F r om th e ory to r ea l i ty

The input transformation matrices were computed based on an equal oc-
currence for each input. In practice, there was indeed a fairly equal distri-
bution among the classes (medians around 20%), but with a preference for
‘right’ (about 30%, due to level design), and a lower occurrence for ‘no ac-
tion’ (around 10%).

How does this affect the amount of control people had? Based on the
confusion matrix of observed inputs and into which system responses they
were transformed, we computed the observed mutual information. The the-
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oretical and observed mutual information are tightly correlated, see Fig-
ure 13.

F i g u r e 1 3 : The theoretical amount of control shows a tight linear relationship
with the observed amount of control. How to interpret Tufte box plots:
Each vertical ‘bar’ represents the minimum, lower quartile, median, up-
per quartile, andmaximum. The dot indicates themedian, and the inter-
quartile range is visualized as the vertical white space around this dot.
Crosses are outliers, which are beyond 1.5 times the inter-quartile range
from the lower and upper quartiles.

We decided to use themedians of observedmutual information, instead of
its purely theoretical counterpart, to group the data points for each input
transformation matrix. These observed medians per matrix are the dots in
Figure 13. This grouping of data allows us to provide box plots with more
statistical information about the data. The exact details per run are lost in
this approximation, but in view of the close relationship between the theo-
retical and observed values, this effect should be minimal.

S e n s e o f c ontro l

The questionnaire contained two questions related to the user’s sense of
control: “I had the feeling that the hamster did what I wanted it to do” and “I had
the feeling the computer was following my commands”. These items averaged
together form the combined sense of control scale, which was found to be
highly reliable (Crohnbach’s α = 0.89).

Figure 14 shows the sense of control results grouped per input transfor-
mation matrix represented by the median observed mutual information re-
lated to it. The strong and significant fit of the linear regression analysis
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between mutual information and sense of control (β = 36.51,p < 0.001)
indicates that people are competent at estimating their level of control.

F i g u r e 1 4 : The relationship between actual and perceived control. The actual
control is themedianmutual information, representing the input trans-
formation matrices. Perceived control is the combined control scale. A
linear regression analysis (the dashed line) showed that actual control
is a highly significant predictor of the perceived control (β = 36.51,p <

0.001), accounting for 72% of the variance. The indicated outliers were
included in the regression analysis.

How well does accuracy do as a predictor of sense of control? Again, we
use the actual accuracy as observed from the interaction logs. Accuracy is
a less accurate linear predictor of sense of control than mutual informa-
tion, explaining 67% of the variance as opposed to 72% (with p < 0.001, the
same). The medians indicate an exponential relationship, which is to be ex-
pected based on the logarithmic relation between mutual information and
accuracy.

S u f f i c i e nt contro l

The amount of frustration decreases when the amount of control (inmutual
information) increases (β = −23.35,p < 0.001). However, this does not tell
us the minimum amount of control users need. One could put an imaginary
boundary at some level of the VAS item, but what level of frustration is un-
acceptable?

Another source of information on howmuch control is needed is the way
runs were ended. Participants could simply leave the website, or they could
wait a minute and then skip to the questionnaire by pressing a button, or
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F i g u r e 1 5 : The percentage of different ways of ending a run for each of the dif-
ferent levels of control.

they could finish the level by bringing the hamster to safety. At the neces-
sary amount of control,more runs should be finished, and fewer runs should
be aborted. People can have various reasons not to finish a run, which are
not related to control. Perhaps they did not like the game enough, or some-
thing more important came up. As long as the reasons are not connected to
the amount of control, we can assume that it will have an equal chance to
occur at each of the levels of control.

Figure 15 shows the different ways runs were ended for each of the dif-
ferent levels of control. The numbers of aborted and skipped runs slightly
decreasewith increasing control, and the number of finished runs increases
accordingly. Surprisingly, the effect of the amount of control does not seem
to be very strong, especially for higher levels of mutual information. How-
ever, on the low control side, up to a mutual information of 0.68 bits, there
does seem to be a clear effect, with a steep decrease in aborted runs, and a
similar increase in finished runs. This seems to indicate that up until this
point, the amount of control was the critical reason to stop playing. Be-
yond this level of control, other unknown, but control-independent, rea-
sons seem to becomedominant as the percentages becomemore steady. The
increase in aborted runs after 1.5 bits could be related to the decrease in fun
participants experienced when the level of control got (close to) perfect –
see our previous data analysis in [5].

This critical point where the amount of control is no longer a critical fac-
tor for finishing the game is at about 0.68 bits. This corresponds to 65% ob-
served accuracy for 5 classes. At the 5 inputs per second this game allowed,
this is an information transfer rate of 204 bits per minute.
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4 . 4 D i s c u s s i o n an d c on c l u s i o n s

S e n s e o f c ontro l

People are competent at estimating their level of control over keyboard in-
put in this game. There is a strong and significant linear relationship be-
tween people’s sense of control and how much control (in mutual informa-
tion) they actually had, where the actual amount of control explained 72%
of the variance in perceived control. This observation may be generalizable
to other inputs, other applications, and less immediate effects of the input.
To confirm this, further research is required.

I suspect that the key aspect for users to be able to assess their level of
control is that they are certain about what input they provide. With brain-
computer interfaces, this is not yet the case. Even with relatively simple
mental tasks such as focusing on a flickering target in the case of SSVEP,
participants can be uncertain whether they are focusing in the right way or
with the right intensity. In such situations, the psychological effects on the
perception of control might be stronger, which would correspond to what
we have informally observed in practice. However, with more practice this
uncertainty, and any positive effects from the novelty of this type of inter-
face, will diminish. As a result, the actual amount of control will become
more dominant in the perception of control.

Yet, some level of uncertainty will remain even with practice. This opens
up a way to make uncertain input modalities more accepted, for example
through the psychological phenomena mentioned in the background sec-
tion, such as the illusion of control. More uncertain input modalities could,
for example, be applied to user actions which will have a positive end re-
sult, and input modalities with more accurate detection to those actions
that prevent a bad outcome from occurring. Input tasks and feedback can
also be chosen to enhance these effects. Such deliberate manipulation of See Section 8.2 for

further musings
about this direction
of investigation.

perception is particularly applicable for games, as the goals and results of
user actions are designed by the game designers instead of following from
user goals. Besides, ambiguity can be used as a way to enhance user engage-
ment [19]. Related to this concept is the idea to purposefully introduce a
positive bias in the feedback [22].

S u f f i c i e nt contro l

We observed a critical level of control at 0.68 bits of mutual information,
below which the amount of control affects the number of finished runs. In
this application, this corresponds to an accuracy of 65% for 5 classes. This
is slightly lower than the 70% indicated by BCI research groups (see Back-
ground and related work).
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Again, this result is based on this one application, with keyboard input.
Plus there are different ways of determiningwhat amount of control is suffi-
cient. This concerns just one specific aspect: whether people give up playing
the game. Besides, the potential other factors that may affect the sense of
control could likely affect the necessary amount of control as well.

All this begs for more research in this area. Not only to increase the
amount of information that can be provided through interfaces like BCIs,
but also to investigate how this critical amount of control might be reduced.
Again, games provide the perfect vehicle for this kind of research, as the
goals and results are designed for a specific experience. An example of a
concrete next step could be to compare the perception of control in a game
where in one condition the control is used to obtain a gain and in another
to prevent a loss.

A related direction for investigation is whether to use uncertain input for
direct or indirect control [23]. Indirect control is when input affects game
mechanics. Direct control is when input affects game objects directly. In
the case of multimodal interaction, using any uncertain inputs for indirect
control may allow for the more certain direct control to circumvent any
problems caused by the uncertain input.

Key po i nt s

• The perception of control in relation to an interface can be split up
into three parts: (1) How much control the user has in providing the
input; (2) How much the provided input is recognized by the system;
(3) Interface and application aspects that appeal to specific psycholog-
ical phenomena that affect our sense of control.

• If people have full control over the input task, they appear to be good
at estimating how well this task is recognized by the system. In our
application, the actual level of task recognition explained 72% of the
indicated sense of control.

• As the uncertainty over the input task decreases with training, the
actual task recognition will becomemore dominant in the perception
of control.

• Uncertainty may be deliberately exploited to create systems that peo-
ple will perceive as providing more control than they actually do.

• How much control is enough obviously depends on the application,
but in this particular case a mutual information of 0.68 bits, or a 5-
class accuracy of 65%, seems to be the minimum to prevent people
from giving up.
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P o st - p r o c e s s i n g i n

B C I l i t e ratur e

From Chapter 3 we know that users want their input to be easy to provide, and well
recognized by the system (and users have a good sense of the system detection ac-
curacy, see Chapter 4). These demands seem to be exactly the opposite of what BCIs
currently have to offer, especially when talking about consumer-grade hardware
used in normal, out-of-the-lab situations (see Chapter 1). Post-classification pro-
cessing can increase performance and reduce user effort by adjusting the way the
input is being used. Previous surveys indicate a lack of attention for the application
of post-processingmethods in BCIs in the past. In this chapter, I investigate whether
this is still the case by conducting a follow-up literature review. To increase aware-
ness of the potential benefits of these methods for the BCI community, this chapter
also provides an initial overview of the methods (further extended in Chapter 6) and
the performance gains reported in these studies.

Brain-computer interfaces (BCIs) provide systems with input based on the
user’s mind, so devices and applications can respond to specific mental
states. Like other input modalities based on observations of the body, BCIs
do not provide perfect recognition of what a user is trying to convey [1, 2,
3, 4]. These inputs suffer from problems related to noise, non-stationarities, See Chapters 1 and 2.
and ambiguity [5]. And these problems getworse themorewemove towards
real-world applications, withmore noise, distractions, andmultitasking. As
input is the basis for usable systems in general, and recognition accuracy
is most important to users of BCIs [6], it is only logical that so much BCI re- See Chapters 3 and 4.
search is devoted to improving the detection ofmental states, by improving
the recording technology, and inventing sophisticated feature extraction
and selection methods.

But there is another approach that can significantly improve control
and reduce user effort: post-classification processing, or post-processing in
short [7]. Duda, Hart, and Stork roughly define post-processing in their clas-
sic text book “Pattern Classification”: Post-processing methods can take
into account information that goes beyond the narrow scope of the clas-
sifier, such as context information or the cost of the action triggered as a
result of the classification [8]. In this thesis, I define the term slightly more
broadly to include all methods that aid in the translation from logical to
semantical control signals, that is from classification (feature translation)
results to input with meaning in the application context. This definition is
more in line with the literal meaning of the term ‘post-processing’ indicat-

6 1
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ing the position of these methods in the BCI cycle (see Chapter 2). Other
general terms that have been used to indicate post-processing or subsets
of post-processing methods are “hybrid BCI”, “shared control”, “context-
aware”, “context-sensitive”, and “intelligent control” [9, 10, 11, 12, 13].

What post-processing essentially does is add an external cerebellum to
the cortex-based control signal, to make it smooth, adaptive, and accurate;
the same function our own cerebellum performs when translating motor
commands from the motor cortex to the spinal motoneurons which pass it
on to our muscles. Wolpaw poses that the variability in BCI performance
is inherent to measuring the cortex directly, without the cerebellum and
spinal motoneurons for adaptive output [14]. His proposed solution is to
develop BCIs that are controlled with goal selection, instead of a step-by-
step process control. This chapter will show other methods that can result
in more smooth, more adaptive, and more accurate control.

Other input modalities, long before BCI, have found a solution in these
post-processing methods. When you press a key on a keyboard, the output
signal does not simply go from off to on. There is a so-called ‘dirty edge’, a
period where the signal wavers between on and off, before settling on on.
A dwell time is added for the system to interpret this as a clean jump. For
themouse, complex transfer functions translate physical mousemovement
to movement on-screen, in such a way that it dynamically provides an opti-
mal trade-off between speed and precision. Yet, the BCI community seems
hesitant to use these often-simplemethods to increase the usability of their
systems.

To provide some idea of how post-processing can improve the perfor-
mance of a BCI system, let us look at a P300 speller [15]. This application
shows a matrix of characters that the user may want to type (see Figure 16).
The user then counts the number of times the wanted letter is being high-
lighted, in order to eventually ‘type’ it.

Most P300 spellers combine multiple repetitions of P300 detections, for
example by averaging. This means that the user must pay attention to the
character to select for multiple flashes for each row and column. The multi-
ple P300 classification probabilities are then combined to yield one detected
letter. Krusienski et al. summed the distances to the LDA decision plane for
the repeated flashes for each row and each column [16]. The row and col-
umn with the largest summed distances determined the letter. Where one
repetition yields an average classification accuracy of 25%, five repetitions
already improves this to 70%, andwith fifteen an accuracy of 90% is reached.

A second improvement could be to make use of the predictability of lan-
guage. After writing ‘TH’, there are not so many options for the next char-
acter. An ‘E’ is a lot more likely than a ‘B’. These probabilities can be taken
into account when interpreting the next input. Speier et al. added a simple
trigram model to their P300 speller, which provides the probabilities for a
character given the previous two characters [17]. This model not only af-
fected the interpretation of the P300 input, but also reduced the number of
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F i g u r e 1 6 : An example of a P300 speller matrix,with one column ‘flashed’. Rows
and columns are flashed repeatedly. The user focuses on the character
she wants to type, and mentally counts each time her target flashes.
After a certain number of repetitions, the system types the character
which resulted in the most pronounced P300 responses, which should
be the user’s target.

necessary repetitions, which were limited by a probability-based threshold.
It increased the accuracy by 10%, and improved the bit-rate from 22 to 33
bits per minute.

As post-processing methods affect the translation from logical control to
semantic control, they are likely to affect the input required. This is how
post-processing can do more than improve recognition accuracy: it can ex-
plicitly reduce user effort, as in the above example by reducing the number
of repetitions. To take this even further, with auto-completion, for example,
words could be finished off automatically, such as ‘congrat’ to ‘congratula-
tions’. Such a feature could add another dramatic reduction of the amount
of input needed to type a certain text.

These are large performance increases that make the difference between
a barely functional proof-of-concept for the sake of science (25% accuracy),
and a system that people will actually want to use in real life (100% accu-
racy)1. Just with the help of a couple of post-processing methods.

In a paper from 2006, Jackson et al. compared 21 BCI systems with a com-
prehensive framework that included the control interface specifically [18].
Only two of those systems (9.5%) had one.

Bashashati et al. [7] conducted a survey of over 200 BCI papers published
before 2006, with a wide search net, including all English conference pa-
pers and journal articles with ‘BCI’, ‘BMI’, or ‘DBI’ in the title, abstract, or

1 Although the end result here was 100% detection accuracy, there are contexts where a lower
performance actually results in a better user experience. See Laar et al. [5] for an example.
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keyword list. They concluded that less than 15%2 of found systems used
some form of post-processing [7]. Their table with the papers with post-
processing they found has been reproduced here, see Table 2. The authors
summarize: “Of the 30 BCI designs that use post-processing algorithms to
reduce the amount of error in the output of the BCI system, 57% use averag-
ing techniques and consider rejecting activations that have low certainty,
27% consider using the debounce block (or refractory period) to deactivate
the output for a short period of timewhen a false activation is detected, and
16% use event-related negativity (ERN) signals to detect error activations.”

In the last seven years, one would expect that this number has gone up.
The number of BCI systems aimed to be used in real-world situations has in-
creased. Besides, most post-processingmethods are extremely simple to im-
plement. Why would you not boost the performance of your system, when
performance is still considered to be the main problem of BCIs today?

A recent review paper by Nicolas-Alonso and Gomez-Gil [19] is indicative
of the current undervaluation of post-processing methods that still exists
in the BCI community. It describes the current state of the art as well as
fundamental aspects of BCI system design. It cites over 300 BCI papers, so
it attempts to be a good representation of current BCI research. Although
it does mention the control interface as a processing step in between clas-
sification and the application, this processing step does not get the same
attention as the other BCI processing steps. All the other steps get their
own section, comparing different implementations. Post-processing meth-
ods (also never indicated as such, nor as control interface steps) aremuffled
away in the descriptions of various applications.

To investigate the current use of post-processing in BCIs, I conducted
a follow-up literature review to the one from 2007. Where the survey by
Bashashati et al. [7] looked at all methods used in BCI systems, I focused
solely on the post-processing methods. I include an overview of the post-
processing methods with the performance gains reported in these studies,
as a first step to increasing awareness of the potential benefits, and opening
up the dialogue about these methods.

5 . 1 L i t e ratur e r ev i ew metho d s

How do you search for something that most people do not apply de-
liberately? Researchers use many different words to describe the post-

2 Thirty BCI papers (the authors seem to use ‘paper’ and ‘design’ interchangeably) out of over
200 reviewed constitutes less than 15%. However, if we look at Table 2, it actually contains only
25 unique citations instead of 30. (The original table also mentions Millán and Mourino 2004b,
but there was no corresponding citation in the references list.) Besides, it is important to note
that many of these citations are from the same research groups. Six haveMillán as first author.
Five of them have involvement of Birch, and four of Pfurtscheller. It is doubtful each of these
papers refers to a distinctive BCI design.
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Post-processing Reference

ERN-based error
correction

Bayliss, Inverso, and Tentler [20], Blankertz
et al. [21, 22], Parra et al. [23], and Schalk et
al. [24]

Successive averaging
/ rejection option for
low posterior proba-
bilities (choice of ‘un-
known’ output state)

Anderson, Devulapalli, and Stolz [25],
Bashashati, Ward, and Birch [26], Birch,
Bozorgzadeh, and Mason [27], Borisoff et al.
[28], Fatourechi et al. [29, 30], Gysels and
Celka [31], Millán [32], Millán et al. [33, 34,
35, 36], Millán and Mouriño [37], Müller-Putz
et al. [38], Penny et al. [39], Roberts, Penny,
and Rezek [40], Townsend, Graimann, and
Pfurtscheller [41], and Vidal [42]

Debounce
(refractory period)

Bashashati, Ward, and Birch [26], Borisoff et
al. [28], Fatourechi et al. [29, 30], Müller-Putz
et al. [38], Obeid and Wolf [43], Pfurtscheller
et al. [44], and Townsend, Graimann, and
Pfurtscheller [41]

Tab l e 2 : Reproduction of “Post-processing methods in BCI designs” from
Bashashati et al. [7]. © IOP Publishing. Reproduced by permission of IOP
Poblishing. All rights reserved.
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processing methods they use — just for smoothing methods alone we find:
filter, antialiasing, averaging —, and although most papers do include spe-
cific paragraphs on brain activity acquisition, preprocessing, feature extrac-
tion, and feature translation (mostly called ‘classification’), not many pa-
pers have an explicit paragraph on ‘post-processing’ or ‘control interface’.

As I could not trust the use of specific terms in the title, abstract, or
keywords list (which was the approach by Bashashati et al. [7]) I needed a
database that allowed us to search in the article text itself. This eliminated
those databases that are most popular for literature reviews, such as Else-
vier’s Scopus and Thomson Reuters’ ISIWeb of Knowledge. I selected Google
Scholar, as it has one of the largest databases, is not limited to specific re-
search areas (important in an interdisciplinary area as brain-computer in-
terfaces), and also allows for the necessary text search.

Searching for BCI papers in general yields too many search results3, with
too many false positives: papers that would not include any information
about post-processing whatsoever. But the search should also not be lim-
ited to just those methods I already knew about, or to those specific names
for those methods. On the other hand, adding any relevant keyword would
exclude papers that did not explicitly mention this term.

In the end, I decided to use the search query
bci AND brain AND post-processing

for 2006–2012, in Google Scholar, looking in the entire publication text, ex-
cluding patents.

Although adding the term ‘post-processing’ may appear to result in a
rather strict search query, it had the highest chance of finding papers with
post-processing methods without defining in advance what these methods
should be, and how they should be called. At the same time, adding the term
did provide a good selection from the total set of papers on brain-computer
interfaces published in this time period. The chosen search query yielded
274 search results4. These results were further inspected as to whether they
fulfilled all the following criteria: (1) it is a journal article or conference
paper, and (2) it describes a brain-computer interface, (2) which uses post-
classification processing.

5 . 2 R e s u lts

Of the 274 search results, most papers ended up not fulfilling these crite-
ria. Book chapters, theses, presentations, and other non-articles were ig-

3 “bci AND brain” for 2006–2012 gives 13.100 search results in Google Scholar. “bci” alone for
the same time period yields 22.700, which includes papers on biology concept inventory and
BCI-algebras, for example.

4 Now, in June 2014, about a year after I conducted this literature review originally, the number
of results for 2006–2012 has risen slightly to 292.
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nored. Three articles could not be accessed. A few articles that showed up
in the search results have yet to be published. Some papers were not about
brain-computer interfaces (but, for example, about a bladder control in-
dex; I did include some cases with only offline brain activity analysis which
are officially not considered BCIs either), or about post-classification post-
processing. Post-processing is obviously a very generic term, and can in the-
ory be used to denote any processing that happens after something else,
such as immediately after recording the brain signals. It is important to
note that in such cases I did not simply dismiss the paper. The paper was
carefully read to ensure it was not using any post-processing according to
the definition provided in the chapter introduction, even if the term was
not used as such. In the end 40 papers were actual hits, which comes down
to 15% of the original search results.

P u b l i c at i o n i n c r ea s e ov er th e years

To investigate whether the use of post-processing methods is on the in-
crease, as one would expect after the benefits were proven (see the Intro-
duction), I compared the number of post-processing papers I found to the
total number BCI papers published. Neither the number of post-processing
papers nor the number of general BCI papers will be complete, but they are
a subsample that are indicative of the total picture in a relative comparison.
The number of samples (7 years), is also quite small. Nevertheless, this data
should give somehint towards the use of post-processing in brain-computer
interfaces over this time period.

To determine the number of BCI papers published in general, we used
Thomson Reuters’ Institute for Scientific Information (ISI) Web of Knowl-
edge, just as was done in the bibliometric study into the publications on
brain-computer interfaces by Hamadicharef [45]. We also used the same
search key, but adjusted the year range to ours: Topic=(”brain-computer
interface”) AND Year Published=(2006-2012), Document Types=(ARTICLE).
This yielded 1408 results.

Figure 17 shows both the numbers of general BCI publications and post-
processing publications published per year. The number of published pa-
pers using post-processing methods is growing. However, relatively to the
total number of BCI publications, post-processing does not appear to be on
the increase.

Metho d cat egor i zat i o n an d ov erv i ew

Some papers concerned the same BCI system. For the categorization, these
papers have been combined and are represented by just one of the articles.
Fatourechi et al. [75, 76] and Fatourechi, Ward, and Birch [53] all discuss the
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F i g u r e 1 7 : Above: The number of general BCI publications and found post-
processing publications published per year. Both numbers show
growth.
Below: the ratio of found post-processing papers to BCI papers in
general per year. Although the ratio of found post-processing papers
to all BCI papers has increased from 1:36 (2.8%) in 2006 to 1:29 (3.4%) in
2012, there seems to be no steady increase.
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F i g u r e 1 8 : Categorization of the post-processingmethods used in the 30 distinct
systems described in the 40 papers. Category circle radius corresponds
to the number of systems assigned to that category.
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Post-
processing

Systems

Autocompletion Ashari, Al-Bidewi, and Kamel [46]

Auto-
correction

Ferreira et al. [47] and Manoochehri and Moradi [48]

Context
actions

Makeig et al. [49] and Satti, Coyle, and Prasad [50]

Dynamic
interface
adjustment

Jarzebowski, Lakshminarayan, and Coleman [51]

Smoothing Coyle et al. [52], Fatourechi, Ward, and Birch [53], Heger et
al. [54], Lee et al. [55], Liang et al. [56], Perdikis et al. [57],
Poli, Salvaris, and Cinel [58], Temko et al. [59], Verwaeren,
Waegeman, and De Baets [60], and Plass-Oude Bos et al. [4]

Voting Dobrea, Dobrea, and Costin [61], Duvinage et al. [62], Ferreira
et al. [47], Verschore et al. [63], Liu et al. [64], Makeig et al.
[49], Martinovic et al. [65], Orhan et al. [66], Rakotomamonjy
et al. [67], Riechmann et al. [68], Satti, Coyle, and Prasad [50],
Zhang et al. [69], and Zoughi and Boostani [70]

Debiasing Coyle et al. [52] and Perdikis et al. [57]

Normalization Hasan and Gan [71], Temko et al. [59], and Plass-Oude Bos et
al. [4]

Threshold Fatourechi, Ward, and Birch [53], Hasan and Gan [71], Jun
[72], Leeb et al. [73], Manoochehri andMoradi [48], and Solis-
Escalante et al. [74], and Jun [72] (Adaptive)

Multiple
thresholds

Coyle et al. [52], Satti, Coyle, and Prasad [50], and Plass-Oude
Bos et al. [4]

Cooldown Fatourechi, Ward, and Birch [53], Hasan and Gan [71], and
Solis-Escalante et al. [74]

Dwell time Hasan and Gan [71], Leeb et al. [73], Solis-Escalante et al. [74],
and Plass-Oude Bos et al. [4]

Repetition
threshold

Verschore et al. [63], Liu et al. [64], Makeig et al. [49], and
Orhan et al. [66]

Multimodal
(sequential)

Duvinage et al. [62] and Riechmann et al. [68]

Tab l e 3 : 30 systems from 40 papers, categorized by post-processing method.
When systems use multiple methods, they are repeated for each.
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LF-ASD, BCI switch controlled by imaginary finger movements. Hasan and
Gan [77, 78, 71] detail the same BCI system to play Hangman. Lee et al. [79,
55] are both about the same study on spike trains. Zoughi and Boostani [70]
and Zoughi, Boostani, and Deypir [80] are about detecting anaesthesia. Poli,
Salvaris, and Cinel [81, 58] describe a P300-based BCI mouse. Solis-Escalante
et al. [74] and Leeb et al. [73] discuss the Graz BCI. Temko et al. [59, 82] are
about seizure detection. For Perdikis et al. [83], we looked up a follow-up
paper with more details, which is Perdikis et al. [57].

Thepapers for each systemwere thoroughly analyzed for post-processing
methods. When different papers used the same or highly similar methods,
but used a different name to indicate the method, one name was chosen to
represent the method in both. These names were selected based on ease of
interpretation and how well it identified the method category. The devel-
opment of this categorization has been an iterative process.

Refer to Table 3 for an overview of the papers by post-processing. Fig-
ure 18 shows a visual representation of how the different methods are rep-
resented in the selected papers.

Auto-correction, autocompletion, context actions, and dynamic interface adjust-
ment are methods which are particularly powerful when they have access
to the application state, or otherwise have an internal model of certain
application-based logic. Auto-correction is about adjusting previous input Auto-correction
based on the inputs that happened before and after. As a result, you need a
kind of roll-back to be able to implement this. An example of this in a BCI
spelling application is when the user spells “teh”, to automatically correct it
to “the”5. Such situations can be detected with a relatively simple language
model.

Autocompletion thenwould be to offer the likely option “the” after the user Autocompletion
only provided the “t”. With context actions, one input can trigger a variety Context actions
of actions, depending on the context. In a role-playing game, for example,
the same action (say handmovement imagery) could trigger a conversation
when near a person, or picking something up when near an object. Dynamic
interface adjustment is mostly used to make it easier to select more likely Dynamic interface

adjustmenttargets. This can, for example, be done by rearranging menus or increasing
target sizes.

The most-used methods are smoothing and voting, which coincides with
the results fromBashashati et al. [7], see successive averaging in Table 2. These
two methods are very much related, as both combine multiple samples in
order to obtain a more robust conclusion. Outliers have less influence on
the end result. The difference is that voting takes a specific group of sam-
ples, often related to a particular stimulus, whereas smoothing is a contin-

5 Interesting to note: these search results contained no papers using error-related negativity (ERN)
to correct interpretation mistakes afterwards. One could also argue that this is not really post-
processing, but more like a mental backspace. Then it is simply a separate input which is in-
terpreted independently. It does not affect the interpretation of the logical control of another
input.
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uous process, with a sliding window. To give a concrete example, for a P300
speller, it is common to combine multiple P300 classifications for each pos-
sible target, for example by taking the average probability. This is voting.
On the other hand, an indication of relaxation might be smoothed by tak-
ing the average of a sliding window of data, resulting in a more fluid signal
which is less sensitive to short disturbances.

Normalization and debiasing serve to adjust the range and distribution of
the control signal.When the input is not evenly distributed (biased), a trans-Debiasing
form can adjust this. One of the most simple examples is adding an offset,
to adjust the central tendency of the input values. Normalization transformsNormalization
the input to the right range. Such transforms to adjust the span and zero
(the lowest possible value) generally also affect the distribution, so some
debiasing may be inherent.

Another large category is thresholds. Thresholds are a way to transformThresholds
continuous data into discrete actions, which is essentially a form of binning.
Data below the threshold can either be rejected, or interpreted as a low value.
The difference is that a low value could still result in a system response,
whereas in the case of rejection, the observation may never be passed on to
the listening application. For example, when a brain-sensitive mp3 player
receives a control signal declaring that the user is happy (the signal is high,
above threshold), the music player can decide to play some happy tunes.
When the mp3 player observes low happiness, it can play a sad song. If, how-
ever, it does not receive any control signal because the data was rejected,
there is nothing to respond to. This no control (or idle state) situation can be
a very important feature in BCI systems that listen for user input continu-
ously, for reasons related to the Midas touch problem – not every activity
in the brain is meant as a control signal [84, 27, 85]. Such a threshold can be
made adaptive, to balance the occurrence of low (or no control) and high [72].

Multiple thresholds, cooldown, and dwell time are all methods to debounce6
the signal, meaning that it reduces fast, unwanted oscillations. With multi-
ple thresholds, you need to decide how to deal with the new intermediateMultiple thresholds
state. It is either a rejected no control state, or retains its previous state. This
last option is called hysteresis, and has, for example, been used in Plass-Oude
Bos, Poel, and Nijholt [6]. In that prototype, the online role-playing game
World of Warcraft is adjusted to respond to the user’s mental state. When
the user is relaxed, her avatar is an elf. When the low threshold (0.25) is
crossed, she automatically transforms into a bear. To return to being an elf,
she will need to increase her relaxation to cross the high threshold (0.75).
A cooldown, also known as refractory period, suppresses the output for a setCooldown
cooldown duration, after the control signal was high. Adding a dwell time re-Dwell time
quires the signal to be high for a set period, to result in a high output. The
input for these debounce methods can either be continuous or discrete, but

6 Although in BCI papers, debounce is generally used to indicate a cooldown period, the soft-
ware and hardware debouncing of physical buttons is generally done by adding a dwell time,
implemented through a simple counter or a capacitor.
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the output is generally discrete; similar to the behaviour of a switch turning
on or off. This makes the output quite different from smoothing, although
smoothing also removes fast oscillations. Thesemethods are applied to non-
stop input, as opposed to the intermittent type of input which is common
for voting.

A very different kind of threshold is the repetition threshold. Its purpose Repetition threshold
is to reduce time: the action is triggered as soon as a sufficient probability
level has been reached. This is faster than simply going for a (larger) fixed
number of repetitions that is known to be on the safe side. These repetitions
can then be combined through a voting procedure, for example by averag-
ing. This is why all repetition threshold systems are within the voting circle
in Figure 18.

Multiple inputs can be combined for control, which can be done sequen-
tially or in parallel. In BCI research such combinations have been termed
“hybrid BCI” [86]. In the research area of human-computer interaction, this
concept is known as the more generic “multimodal interface” [87]. The two Multimodal
examples listed here do not actually combine two inputs to arrive at a more
certain end result, but use one input to switch off the detection of the other.
EOG activity switches off the P300-based BCI in [62], and detected P300 ac-
tivity turns off ERD-based motor imagery detection in [68].

Most papers only use one post-processing method, but combining them
appropriately can be very powerful. One system even combines five meth-
ods: Hangman uses debiasing, smoothing, rejection thresholds, dwell time,
and cooldown [71].

D et e ctors , a p p l i c at i o n s , a n d p o st - pr o c e s s i n g

metho d s

Some post-processing methods are more commonly used with certain BCI
detectors7, such as voting with P300. Similarly, auto-correction or autocom-
pletion based on language models are an obvious benefit to speller applica-
tions, which in turn are most often controlled by P300 again. Are any such
relations apparent from the papers of this review? Table 4 shows for each
detector, which methods have been used.

There is a large diversity in the detectors themselves. It is not just the
“classic 4” (P300, SSVEP, motor imagery, and SCP), but papers also describe, See Chapter 2.
for example, emotion detection, person identification, and a set of mental
tasks called ‘the 5 tasks’ which includes tasks like mentally composing a
letter and mental rotation of a three-dimensional object [61].

For most BCI detectors, there are no clear preferences for specific post-
processing methods. Only motor imagery and P300 show a preference, per-

7 Detector is here used as a general term to indicate the processing to detect specific BCI
paradigms and mental states, independent of the exact implementation.
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BCI detector Post-processing method

Motor imagery Threshold (6), Smoothing (4), Cooldown (3), Dwell
time (3), Voting (2), Debiasing (2), Thresholds, multi-
ple (2), Auto-correction (1), Context actions (1), Mul-
timodal (classification) (1), Adaptive threshold (1),
Normalization (1)

P300 Voting (5), Multimodal (sequential) (2), Threshold,
repetition (1), Smoothing (1), Goal selection (1), Dy-
namic interface adjustment (1)

Emotion Context actions (1), Threshold, repetition (1),
Smoothing (1), Thresholds, multiple (1), Dwell time
(1), Voting (1), Normalization (1)

mVEP Voting (1), Threshold, repetition (1)

RSVP Voting (1), Threshold, repetition (1)

5 tasks Voting (1), Smoothing (1)

Seizure detection Normalization (1), Smoothing (1)

Person identification Auto-correction (1), Voting (1)

Anesthesia Voting (1)

Hand speed Smoothing (1)

Spike trains Smoothing (1)

Tab l e 4 : Overview of the methods used in combination with each BCI detector.
The number after each method indicates the number of systems in the
literature review that used thismethod in combinationwith this detector.
Some systems combined multiple methods.
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haps due to the relatively large number of papers describing these detec-
tors.

Formotor imagery: threshold and smoothingwere themost popular post-
processing methods. The applications that were controlled by motor im-
agery generally required discrete actions, such as ‘move right’. This requires
a transformation from a probability of motor imagery of the right hand to
the discrete decision of whether this motor imagery occurred or not, which
is done by applying a threshold. The methods list also contains many meth-
ods to make this decision less sensitive to outliers (cooldown, dwell time,
smoothing), or to make a fixed threshold more viable (normalization, debi-
asing).

For P300: the most-used postprocessing method was voting. Voting is
a common method for any detector for externally-evoked brain activity,
which depends on a given stimulus. This is why it is not only listed for P300,
but also for mVEP8, RSVP9, and person identification.

For other relations between detector, application, and postprocessing to
become apparent, more BCI post-processing papers need to be investigated.

D e l i b e rat e u s e o f p o st - p r o c e s s i n g

Asnoted before,most papers that use post-processingwill not have included
the term post-processing, even though many people in the field should be
familiar with the word. The survey by Bashashati et al. [7] features the term
anddescribes it, and, according toGoogle Scholar, this survey has been cited
by 234 papers published in the period between 2006 and 2012.

While the majority of the investigated papers did motivate their use of
post-processing, it was often in a non-specific way, such as “to enhance clas-
sifier performance” [79, 71, 56, 61]. Other motivations are, for example, to
reduce the number of false activations [76], decrease the time per input [51,
63, 66, 46], and to make the output more application-specific [49, 73].

Only for 9 of the 30 systems were any alternatives for their chosen post-
processing methods discussed, and for only 5 was the influence of the pa-
rameter settings of their post-processing methods evaluated. Deliberate
reasoning about whichmethod and which specific implementation to apply
should be preferred. Not only does it serve to inform the reader on why a
specific decision was made, but it also stimulates discussion and structured
evaluation to decide what would be the best method for a given situation.

On the other hand, for 18 of the 30 systems the difference between with
and without post-processing was evaluated. Here are their results ordered

8 To explain these more exotic neuromechanisms goes beyond the purpose of this chapter and
the scope of this thesis. However, for the sake of completeness: mVEP is a visually-evoked
potential that is elicited by making targets move.

9 RSVP stands for Rapid Serial Visual Presentation. As the name implies a sequence of visual
stimuli is rapidly shown to the user.
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by post-processingmethod. A few papers had to be excluded as their results
were not clearly indicated nor easily derivable.

Autocompletion Ashari, Al-Bidewi, and Kamel [46] reduced the number
of necessary selections to select a 7-digit phone number from 7 to 4.

Auto-correction Ferreira et al. [47] reduced the average classification
error from 15.7 to 5.1, andManoochehri andMoradi [48] reduced their false
positive rate from 27% to 18%, although at a small cost in true positive rate,
which went from 64% to 60%.

Dynamic interface adjustment Jarzebowski, Lakshminarayan, andCole-
man [51] reduced their menu depth, and thus the number of steps to arrive
at a selection, with a probabilistic model. This increased the information
transfer rate by 2.5 bits per minute.

Smoothing Lee et al. [55] used smoothing to increase their accuracy by
20%. For Liang et al. [56] it resulted in a 15% increase in accuracy, and for
Perdikis et al. [57] the gain in accuracy was only 3%. On the other hand, in
the paper by Poli, Salvaris, and Cinel [58] smoothing actually increased the
standard error a little, from 3.55 to 3.57.

Voting Dobrea, Dobrea, and Costin [61] increased their 5-class accuracy
from 54% to 71% by averaging over 20 segments. Zhang et al. [69] reduced
their mean square error by 10% with a neural network.

Debiasing Perdikis et al. [57] gained a 5% increase in accuracy with debi-
asing.

Adaptive threshold Jun [72] used an adaptive threshold to balance the
distribution of the output classes, which reduced the mean square error
from 0.59 to 0.30.

Cooldown Fatourechi,Ward, and Birch [53] decreased their false positive
rates with an average of 6% by adding a short cooldown period of only 1
decision sample, while reducing the true positive rate by just 1%.

Repetition threshold Verschore et al. [63] decreased the necessary num-
ber of repetitions from 12 to only 2.69 on average. Liu et al. [64] managed
to increase their information transfer rate from 16 to 26 bits per minute in
offline evaluation, and even to 42 bits per minute online.
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5 . 3 D i s c u s s i o n an d c on c l u s i o n s

Review articles from 2007 and 2012 show the lack of interest in post-
processing methods for brain-computer interfaces [7, 19], even though it
has been shown that they can result in systems that are significantly more
usable by improving detection accuracy and decreasing user effort (for ex-
ample, in [17]).

This review is intended as a follow-up to Bashashati et al. [7], focusing on
BCI systemsusingpost-processingmethods in particular. As post-processing
methods aremostly applied withoutmuch consideration, there is no consis-
tent use ofwords thatmake it easy to identify papers inwhich suchmethods
are used. Our search query “bci ANDbrainANDpost-processing” yielded 274
results for 2006-2012, of which only 40 actually discussed post-classification
processing in brain computer interfaces. There are many more BCI systems
with post-processing that were not found using this query, as the authors
did not use this term.

It could be interesting to define another search query with all the differ-
ent names for the various post-processingmethods found thusfar, and com-
pare those results with the findings in this chapter. Although such a search
query will surely discover more papers with post-processing, it will also be
difficult to keep out false alarms, as certain methods are commonly used
in other BCI processing steps as well. Adding a keyword like ‘filter’ will not
produce much of a selection in the overall pool of BCI papers. On the other
hand, it might be possible to construct a search query with other terms to
indicate certain subsets of post-processing methods, such as “shared con-
trol”, “context-aware”, and “intelligent systems”.

The number of post-processing publications does not appear to be on the
increase relative to the total body of publications about brain-computer
interfaces. For this comparison, both groups were represented by a sub-
set. The total number of publications with post-processing in BCI is yet un-
known, but the papers in this literature study are assumed to be an adequate
representation. The same is true for the total body of BCI publications, here
based on the results of a specific search query in a specific database.

The various post-processingmethods found in this literature reviewhave
been described and categorized, thereby extending the categories provided
by Bashashati et al. [7]. This overview and categorization provides insight
into themethods currently used, but the knowledge it contains is also a first
step to facilitate deliberate decision-making about post-processing meth-
ods. The categorization is mainly based on function, but it is not an abso-
lute. Some methods could have been grouped together, such as thresholds
and multiple thresholds, for example. However, I think that these methods
are functionally different enough to warrant their own category. As for the
category names, the term was chosen that seemed to be specific enough for
the category but general enough to cover everything in it. Also, simplicity
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was preferred over complexity. For example: cooldown was chosen over re-
fractory period.

Some post-processing methods are applied more often in combination
with certain BCI detectors, such as votingwith stimulus-dependent brain ac-
tivity detection and threshold with motor imagery. There were not enough
papers for the other detectors to derive other relations.

Most of the selected papers did use the term post-processing as mean-
ing post-classification processing, and most of them did motivate their de-
cision to apply post-processing. However, there is very little motivation as
to what specific post-processing is applied, and little evaluation of its effect,
either compared to other post-processingmethods, or compared to no post-
processing at all. To enable deliberate use of post-processing methods, it is
vital that authors describe their own deliberations, motivate their choices,
and evaluate the effects.

It is important to increase the awareness of post-processing methods
in the BCI community. Only when these methods are used with the same
thorough deliberation as other methods in the BCI pipeline (such as pre-
processing, feature selection, and classification), will we learn the best
methods for each situation, and what the expected benefits are.

Key po i nt s

• Post-classification processingmethods— post-processingmethods in
short — can drastically improve BCI control and decrease the neces-
sary effort to provide input.

• Post-processing is embraced as a common step in other input modal-
ities.

• Yet, there is little attention for post-processing methods in BCI re-
search, and it does not appear to be increasing relatively to the total
body of publications about brain-computer interfaces.

• Application of post-processing methods should be informed through
discussion and structural evaluation. Only then we can fully benefit.
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6
P o st - p r o c e s s i n g

g u i d e l i n e s

Chapter 5 showed how helpful post-processing methods can be in improving control
and reducing effort. To encourage deliberate reasoning about which methods to ap-
ply, this chapter provides an extended overview of post-processing methods, with
guidelines for their application.

This chapter provides a description of various post-processingmethods, and
guidelines for when they could be useful. I also discuss the three most im-
portant considerations when applying them, provide an example case that
shows how the guidelines could be applied, and end with the answers to
some frequently asked questions.

The methods listed here come partly from the findings of the literature
review discussed before, but also from discussions with experts in various
fields (machine learning, control theory, interaction design, and gaming).
The uncovered post-processing methods have been structured into a guide
to help find suitable methods for a given system. I will refer to this as the
guidelines. You can find this guide in Figure 19. The purpose of these guide-
lines is to showwhat kind ofmethods are available andwhen they are useful,
in order to provide new tools to the toolbox of BCI developers.

It is important to note that the overview in this chapter is by no means
complete. As already indicated, thesemethods have been derived from vari-
ous fields. Although this is themost complete listing I have personally found
so far, there are bound to be more post-processing methods than those
listed here. It is also possible to develop new methods. Hence the reminder
in the figure description to “Be creative!”.

Themethods in this overview have been split into three categories: value
distribution, behaviour, and application levels. This division has to do with
the point of view from which the logical control values (the result from the
feature translation step) are approached.

Value distribution level This level is about redistributing or normaliz-
ing data so they become more meaningful. For example, a relaxation value
of 0.0 obtains its meaning from knowing the range, whether it is from 0.0 to
1.0, or from -1.0 to +1.0.

Behavioural level How should the input behave to be appropriate for
controlling a specific application? How can we make it less (or more) sensi-
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F i g u r e 1 9 : Post-processing guidelines
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F i g u r e 1 9 : (To the left) Post-processing guidelines. For three different levels of
application, questions concerning possible issues will guide you to a po-
tentially helpful post-processing method or method category. Methods
in italics may require external information, such as application context.
These guidelines are meant to inspire, not to restrict. Be creative!

tive? This level is divided in continuous control (like a joystick), and discrete
control (like switches and buttons)1. Different behaviour options have differ-
ent potential problems and different accompanying solutions.

Application level Application-levelmethods take into account themean-
ing of the input as control commands in the context of the application. The
logic of the application creates restrictions on the possible or likely control
commands.

6 . 1 M etho d d e s c r i p t i o n s

There is quite some overlap between this section, and the method descrip-
tions that are part of the literature review in Chapter 5. The descriptions in
this section, however, are meant to accompany the guidelines in this chap-
ter, and have been organized accordingly.

When trying to assign meaning to sensors, these values are often required
(or at least expected) to occurwithin a certain range andwith a certain prob-
ability distribution. For example, when the value is an indication of relax-
ation, it could be convenient if it were in the range from 0 to 1 for all users.
Then the interpretation could be made that 0 means no relaxation at all is
observed, and 1 indicates complete relaxation. Another reason for a fixed
range and distribution is so you can apply ameaningful fixed threshold. For
optimal functional separation, the followingmethods are best implemented
in the control interface. See Section 2.2.

Debiasing When the input is not evenly distributed — for example when

1 The terms continuous and discrete control should not be confused with non-stop and intermittent
control, the equivalents in the time domain. Also, buttons on modern gaming controllers and
some high-end keyboards are analogue, so they provide continuous output instead of discrete.
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the brain activity characteristics during training are different from during
actual use [1, 2] — a transform can adjust this. One of the most simple exam-
ples is adding an offset to adjust the central tendency of the input values.

Normalization When the input is not in the right range, again a trans-
form can fix this. Transforms to adjust the span and zero (the lowest possi-
ble value) also affect the distribution, and may affect the central tendency,
so some debiasing may be inherent. Instead of a simple linear transforma-
tion ax+b, you could, for example, use a sigmoid function, which provides
smooth boundaries on the outer ends of the span.

AlphaWoW uses adaptive z-score normalization (subtract the mean, di-See also Section 2.5.
vide by the standard deviation, with themean and standard deviation based
on recent observations) to automatically adjust the system to the user, and
to prevent the user from getting stuck in one state or the other [3].

Post-processing forms the bridge between the detections and the controls
required by the application. When we start to reason about the way the
application input should behave, we enter behaviour-level reasoning. Like
the value-distribution-level methods, the behaviour-level methods are gen-
erally best implemented in the control interface.

Behaviour-level methods have been split up into methods that result in
continuous control and those for discrete control. Discrete control is again
subdivided into methods that are applicable for switch-like behaviour and
methods for button-like behaviour.

Multimodal fusion If additional information is available through other
input modalities or sensors, this information can be fused with the brain-
based detections, to arrive at more accurate interpretations of the input
from the user. For example, eye tracking information could be combined
with P300 detection to determine what the user is looking at. The strengths
are combined to cover theweaknesses of each individual input (dependence
on good lighting conditions and low speed). This would be decision-level fu-
sion, based on feature translation output. This is a post-processing method,
as opposed to data-level fusion (based on pre-processing output) or feature-
level fusion (based on feature extraction output). Multimodal BCIs are also
referred to as “hybrid BCIs” in the BCI community [4]. Read Gürkök and
Nijholt [5] to learn more about multimodal BCI principles.
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One clear split in input behaviour is whether the control should consist
of continuous values (over a range, like a joystick) or whether the control
should be discrete (from a selection of options, such as ‘on’ and ‘off’) in the
case of a button or switch. Here are the methods that are relevant for con-
tinuous control.

Voting When the control is intermittent, voting can be used to combine
multiple repetitions of the input into one control signal. This reduces sen-
sitivity to outliers, at the cost of increasing the amount of time required to
issue one control command (See the trade-offs in Section 6.2). One of the
simplest ways to implement voting is by averaging. We used voting to com-
bine multiple classifications of covert attention in Wild Photoshoot [6], and
to combine SSVEP classifications in Bacteria Hunt [7].

Repetition threshold When you combine multiple repetitions through
voting, the exact number of repetitions can be optimized with a repetition
threshold, set to a certain probability level for example [8]. See also trade-
offs mentioned in Section 6.2.

Smoothing When the control should be continuous, but also non-stop (as
opposed to intermittent), then smoothing is the way to reduce sensitivity to
brief disturbances. Smoothing is often applied to a sliding sample window,
with a set length and interval. Instead of gathering a set of samples which
then result in one new output, as with voting, each new input can result in a
new output if the interval for themoving window is one sample. This allows
for non-stop system response and feedback. As the name implies, the result
is a more smooth version of the signal. Liang et al. showed how smoothing
significantly improved mental task classification for three different classi-
fiers [9].

There are many methods that provide a smoothing effect, and conse-
quently there are also many different words used in papers to indicate
smoothing: averaging, antialiasing, low-pass filter, or even simply ‘filter’. In
online BCI systems, you can only use causal filters, which take into account
just past and current samples, not samples from the future. For a compari-
son of a number of smoothing implementations, see Figure 20.
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When the application asks for discrete control, or perhaps the mental task
input is most suitable to provide this type of input, there are basically two
options: switch-like behaviour or button-like behaviour. The difference is
that with a switch, it is the state that matters. The control signal is a rectan-
gular wave. With button behaviour, it is about the activation, represented
by a pulse wave. Compare a light switch with typing ‘A’. Both types of con-
trol are often the result of applying one or more thresholds to a continuous
signal. Such a discretization of continuous values into a set of classes is also
called binning. Before going into switch and button-specific methods, I will
first detail threemethods that are applicable for discrete control in general.

Cooldown Adding a cooldown period, also known as a refractory period,
is a form of debouncing. When a threshold is crossed again too quickly, caus-
ing false positives, re-activation can be suppressed for a set time period.
The downside of this method, is that it increases re-activation time [10, 11].
While most-often used in combination with button behaviour, it can also be
applied to prevent quick state changes in the case of switch behaviour. In
this case it would be the state change action that is on cooldown, instead of
just activation (going from off to on). A BCI example using this method is
the system from Pfurtscheller et al. [12], which allows a paralyzed patient
to grasp a drink with his hand. Cooldown prevented switching between the
different grasping states too quickly.

Dwell time When the threshold is set to a good value considering the
value distribution, but the threshold is still crossed too easily, you can add
a dwell time. The threshold then has to be crossed for a set time duration
before the control signal becomes active [13, 3]. This method also has a de-
bouncing effect. The control becomes more deliberate, but also takes more
time (Again, see the part on trade-offs in Section 6.2).When applied to switch
behaviour, the user has to remain in the state range for the (possibly state-
specific) dwell duration in order to activate the state.

Fromeyemovement-based controlwe know that the exact dwell duration
is critical to the flow of interaction [14]. For brain-computer interaction, the
optimal duration is likely to be different and will probably depend on the
specific mental tasks used for input. By applying a different dwell time for
each state, dwell time allows for separate finetuning of the number of false
positives and negatives.
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Adaptive threshold Thresholds can either be fixed or adaptive. In the
adaptive case, aside from the current value, additional information can be
taken into account to make it either easier or more difficult to cross the
threshold. For example, when a Bayesian classifier indicates a high confi-
dence in the output, the threshold could be loweredmaking it easier to cross.
Or when application context makes it less likely for the user to provide cer-
tain input, the threshold for that input could be increased. When such an
adjustment takes place on the application side, it is a form of dynamic in-
terface adjustment; see the dynamic interface adjustment paragraph further
on.

When a threshold results in rectangular wave output, dividing the output
into specific states, the result is switch-like behaviour.

Multiple thresholds If the switch-like behaviour resulting from the ap-
plication of one threshold is too unstable, multiple thresholds or hysteresis
can be used to debounce the control signal. Multiple thresholds normally cre-
ate a deadband in between the thresholds in which no action is triggered
[15]. This ‘no action’ is often referred to as the ‘no control state’ or ‘idle
state’. With hysteresis, the previous state is maintained instead of this ‘no
action’ state [3]. As the upper threshold can be set at a different level than
the lower threshold, suchmethods allow you to fine-tune the expected num-
ber of false alarms and misses independently; see the part on trade-offs in
Section 6.2.

Toggle button Maintaining a certain input can take a lot of effort. This
can be reducedwith the toggle button strategy for state selection. The input
then only requires a short activation, like a button. The resulting pulsewave
then toggles between the states. Section 6.3 provides an example of how this
method could be applied. When converting to this toggle button strategy,
do not forget to check out the methods that might be applicable to button
behaviour.
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Instead of a rectangular wave, a threshold can also result in a pulse wave,
which is activated when the threshold is crossed upwards. This creates
button-like behaviour. It is just the activation that matters, as opposed to
staying within a certain value range, as with the switch.

Voting, repetition threshold Button behaviour is intermittent, and
therefore also suitable for voting to make the control signal less sensitive
to outliers. And, as we saw with the application of voting for continuous
control signals, we can again apply a repetition threshold to adaptively op-
timize the number of repetitions based on some indication of confidence.

Repeat The downside of button behaviour is that it only responds when
the user crosses the threshold upwards, when going from low to high, or
inactive to active. To quickly trigger two times in a row, the user has to
go back to inactivity before becoming active again. This can be made more
effortless by repeating the pulse when the user remains active for a certain
duration. This is the same as pressing and holding the right arrow key to
move a cursor in text totally to the right, as opposed to having to press and
release it repeatedly.

If you have access to the application, just the application state, or can oth-
erwise model some aspects that restrict control possibilities, the following
methods can be useful. Whereas the other methods are often best to imple-
ment in the control interface, application-level methods are often so inter-
woven with the application that it is best to implement them in the applica-
tion directly. Examples of shared control often fall into one of the following
method categories.

Dynamic interface adjustment If you can modify the application inter-
face, you can use probabilistic knowledge about the input related to the ap-
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plication state to make it easier or more difficult to execute certain actions.
Functionally, thismethod is verymuch related to the adaptive thresholdwe
saw in the discrete control section. The difference is that we can now use
knowledge from the application, and use it to induce changes again in the
application.Menu items can be reordered tomakemore likely targets faster
to select. Unlikely targets can even be left out all together [16]. Other ways
to make more likely targets easier to select is by representing them with a
larger surface making them easier to hit [17], or by creating a gravitation
towards them, such as with snapping, which is comparable to the dynamic
used in Hex-o-Spell [18].

Context actions Often, application context determineswhich actions are
available to the user. In a role-playing game, for example, there is often one
generic ‘do’-action, which will trigger a conversation when you are next to
a friend, and which will make your avatar fight when next to an enemy [13].
This means that a limited number of well-detectable inputs can be used to
trigger a wide variety of actions, based on the given context. Formore infor-
mation, see Baldauf, Dustdar, and Rosenberg [19], which discusses various
approaches used in existing context-aware systems and presents a design
framework. Another example is that of a smart wheelchair, which ignores
any commands that lead to a direction where there is no opening [20].

Auto-completion If there are situations where one action determines
the next couple of actions, these following actions can automatically be ex-
ecuted. This is known as auto-completion (a function offered by many text
editors), but also as the termmacro. Auto-completion is often based on lan-
guage models, such as simple probabilistic models generated from n-grams.
Ashari, Al-Bidewi, and Kamel [21] show a combination of auto-completion
with adaptivemenu adjustment based on the longest-common subsequence
in telephone numbers. This method is somewhat related to the application-
level decision of whether to use goal selection (“Go to the kitchen”) or process
control (“Move one step forward”) [22].

Auto-correction As it becomes clear from recent actions that a past ac-
tion is likely incorrectly interpreted, auto-correction can retro-actively fix
that past action. Application of this method does require the possibility to
roll back the application state to the point of the fix. Auto-correction is also
referred to as instant error correction and label correction. Manoochehri
and Moradi [23] shows how this can both decrease the false positive rate
and increase the true positive rate.
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6 . 2 B eyond th e g u i d e l i n e s

The guide provides inspiration as to which methods might be suitable for
a given system. In this section, I will discuss three other important consid-
erations that come into play when selecting and applying post-processing
methods, to give an indication of some of the aspects that are not touched
upon by the guidelines.

B e aware o f trad e - o f f s

Every method has its downsides. The most common side-effects are those
of the methods that increase accuracy at the cost of effort, mostly in the
terms of time [24]. A common example is a P300 speller wheremultiple P300
repetitions are combined to arrive at one character selection [25]. Themore
repetitions, the more certain the system will be about what letter the user
wants to select. On either side of this speed-accuracy trade-off, there is a point
where users will give up: either when the accuracy is too low, or when the
necessary amount of time to provide one application input (in the case of
the speller: one letter) is too high (see also Chapter 4). The sweet spot seems
to be where the user can get something done withminimal overall effort (in
the context of active BCI input).

A similar issue is the delay-accuracy trade-off. Smoothing decreases sensi-
tivity to outliers, which can significantly improve accuracy [9], but comes
at the cost of a delay in the signal (see also Figure 20). Although a delay does
not require you to provide the input multiple times, it can increase the nec-
essary effort in multiple ways. A delay in feedback on the user input when
the input is not perfectly detected either requires the user towait for confir-
mation, or can result in a sequence of incorrect commands which will then
need to be corrected. This can already be experienced with keyboard input
when the system is busy doing something else. At a certain point the re-
ceiving program will catch up on what you did, and if everything was typed
correctly, there does not seem to be a significant problem in terms of ef-
fort. But even then, this lack of intermediate feedback demands additional
mental effort. “Provide feedback”, later rephrased as “Visibility of system
status”, is one of the core usability heuristics for this reason [26]. Feedback
is considered so important that it is number one on Nielsen’s list of Ten
usability heuristics [27].

In the experiment described in Chapter 3 we saw that users prefermental
input tasks that are easy to execute. However, if the user concentrates less
on the input task, the resulting brain activity may also be less pronounced,
resulting in detections that are less accurate [28]. Again, we see a trade-
off, this time between concentration and accuracy. Although this specific
example is at the level of the input task, and not at the control interface, the
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control interface can affect the level of concentration as well, by keeping
the amount of time the user has to repetitively perform the input task to a
minimum. An example of a helpful method in this area is the toggle button
to provide switch-like input to an application.

Another typical trade-off is that ofmisses versus false alarms (or: false neg-
atives and false positives), when it is the result of the position of a threshold
to translate continuous data into discrete categories. Say we apply a thresh-
old to be able to say whether the user is concentrated. A high value yields
a positive classification (yes, the user is concentrating), and a low value a
negative classification (the user is not concentrating). If a threshold is set
higher, then the number of hits (true positives) and also the number of false
alarms (false positives) will decrease. But it will increase the number of true
and false negatives (correct rejections and misses). Then the question be-
comes: what would be worse? The answer depends on the application. A
first-person shooter is an example that could go either way. If you do not
shoot, you will definitely miss your target. How detrimental false alarms,
such as shooting when you do not want to, are depends on how rare am-
munition is in the game, and on how important it is for the gameplay to
keep your position hidden. Hysteresis, for example, can provide a way to
set separate thresholds for activation and inactivation.

There may be more trade-offs along these lines. Based on the examples
mentioned above, a useful guiding principle seems to be to assess the effect
of the choice on the overall required user effort.

I m p l ementat i o n matter s

When you know which method categories can be applied, it is still very im-
portant to consider which exact implementation to use. For example, to im-
plement smoothing you could use a moving average, exponential smooth-
ing, or a causal Savitzky-Golay filter. Refer to Figure 20 to see the difference
in results. In this case, the mean square error of the Savitzky-Golay filter is
half that of the moving average smoother (0.26 versus 0.54).
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Noisy input signal and underlying sine

Moving average

Exponential smoothing

Savitzky-Golay

F i g u r e 2 0 : Comparison of smoothing method implementations. At the top a
noisy input signal (240 samples) in black, with the underlying sine wave
in grey. In the plots below, the sine has been repeated in grey so it is
easy to see the delay caused by the different methods. Moving average
(window size is 20 samples) causes the most delay. Then there is expo-
nential smoothing, with the contribution of the new sample set to 0.1.
The winner is the causal version of the Savitzky-Golay filter (window
size is 21 samples, polynomial order 2, return 17th sample (at 4/5th of
the window)). This method can be very responsive.
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Th e p ower o f c omb i n i n g metho d s

About half of the systems in the literature study of the previous chapter use
only one post-processing method. It will, however, be quite unlikely that
applying just onemethod is enough to obtain the desired behaviour for con-
trol. Figure 21 shows the power of the combination of threshold, cooldown,
and dwell time, which is used by two of the systems in the literature review
[29, 30]. Further research is necessary to uncover other valuable combina-
tions that result in behaviour that could be demanded by applications.

Input signal

Reject threshold

Cooldown

Dwell time

Dwell time + Cooldown

F i g u r e 2 1 : Transforming irregular input to one activation per underlying sine
peak. A high threshold creates a discrete output with a low false posi-
tive rate. Adding a long cooldown period is another big step towards
creating the control signal behaviour we are looking for, but there is
no obvious alignment with the underlying sine peaks. Combining the
cooldownwith dwell timewill result in purposeful interaction, with one
activation around each peak.
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6 . 3 Examp l e : P ax Br i tann i c a

Post-processing transforms the detected brain-based inputs into controlHow well the
prototype designed
in this section holds

up in practice is
investigated in

Chapter 7.

commands for the application. Therefore, before I demonstrate the applica-
tion of the guidelines, first I will explain the task the user will use as input,
and the application that will be controlled with it.

U s e r task

In this case, the brain-based inputs come from the Emotiv EPOC, and are theFor more information
on the Emotiv EPOC

headset and software,
see Section 7.1.

result of a two-class classification: rest versus hand-tapping with the main
hand. The user’s active ‘mental’ task was purposefully chosen to be actual
movement, as it is easier to detect than imaginary movement [31], and pro-
vides a ground truth for determining the accuracy of the system objectively.
For the rest task, users were instructed to simply sit in a relaxed manner.
During training, users could look at the box shown in the Cognitiv suite
training tab of Emotiv’s Control Panel.

Ap p l i c at i o n s o ftware

The application that will be controlled through this pair of mental tasks is
Pax Britannica, see Figure 22. This is a one-button strategy game, developed
by No Fun Games2. As this game requires just one button for control and its
code is easy to adjust (scripted in LUA), it is a very suitable test application
for brain-computer interfaces.

Each player is represented by a factory shipwhich can build smaller ships.
These smaller ships can fight and ultimately destroy the opponent ship. The
last factory ship left standing wins. What ships can be built depends on the
number of resources the factory ship has accumulated. These resources are
automatically gathered over time, and spent immediately when a ship is
built. Building is instant.

With the standard keyboard controls, holding down the button spins the
needle on the radial menu in the middle of the factory ship (see Figure 23).
When the button is released, the factory ship will build the option corre-
sponding to the quadrant the needle is pointing to at that time. The four
build options, one for eachquadrant, are: fighter (effective against bombers),
bomber (effective against frigates and factory ships), frigate (against fight-
ers), and upgrade (allows for faster accumulation of resources, so the player
can build ships more quickly in the future).

Aside from these descriptions concerning the control of the game, it is
important to keep in mind that this is a relatively fast-paced game (one

2 The game is freely available at http://paxbritannica.henk.ca/.

http://paxbritannica.henk.ca/
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F i g u r e 2 2 : Pax Britannica, a one-button real-time strategy game by No Fun
Games. The two big ships on the screen are the factory ships. Each colour
(here, red and blue) represents one player. In the centre of each fac-
tory ship is a selection wheel. When the player is not in the process of
selecting anything, the selection arrow is still at the top of the wheel.
Charge is being built up during this time, shown here in white. The
more charge, the faster the selection arrow will move along the wheel.
The blue ship shows the selection arrow in the third quartile of the
circle. If the player would release now, she would build the ship de-
picted in the centre of the selection wheel. The four different options
are: fighter, bomber, frigate, and upgrade to make the factory ship charge
faster. Fighters beat bombers. Bombers beat frigates and factory ships.
Frigates beat fighters. You can see the video game in action here: http:
//www.youtube.com/watch?v=UYZ1GkyvB2s.

http://www.youtube.com/watch?v=UYZ1GkyvB2s
http://www.youtube.com/watch?v=UYZ1GkyvB2s


1 0 4 p o s t - p r o c e s s i n g g u i d e l i n e s

F i g u r e 2 3 : The radialmenu in the centre of the player’s factory ship, annotated
with the indications for the amount of resources, the selected quadrant
and selected build, and the selection needle

game round takes only two to threeminutes), and time is important. Timing
determines what is built, and spending time doing nothing is a sure strategy
for losing.

Metho d s e l e ct i o n

The post-processing guidelines will provide an initial indication of which
methods could be most suitable given this input pair and the one-button
game control.

Value distribution If the output of the Emotiv EPOC is not suitably dis-
tributed, debiasing and normalization could be used to fix this.

The upper plot in Figure 24 shows the distribution of Emotiv EPOC out-
put values. This plot is generated from data of three participants in a small
test run prior to the actual experiment, based on 9, 12, and 15 training sets.
One training set consists of 30 seconds rest and 32 seconds active task exe-
cution, see Section 7.1. There is not much difference between this overall
distribution and the individual distributions for each participant.

This distribution shows a clear bias for the 0.0 bin ([0.00-0.05>), which can
be problematic when trying to translate these values into application con-
trol commands. Attempts to split up this lower bin into multiple smaller
bins did not achieve a more even distribution for these lower values. The
strong bias for 0.0 remained. However, the Emotiv Control Panel does pro-
vide a sensitivity setting. Adjusting this sensitivity to one ‘tick’ higher, re-
sulted in a more equal distribution, see the lower plot in Figure 24. This
second plot is based on just one participant. However, given that the previ-
ous distributions hardly differed between participants, we can assume that
the distribution with this slightly higher sensitivity setting is more evenly
distributed for others as well. Later on, this is confirmed by the average
distribution observed in the experiment described in the next chapter, see
Figure 27.
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F i g u r e 2 4 : Above: distribution of output values from the Emotiv Cognitiv suite
for rest vs. hand tapping.Values taken from logs of three test run par-
ticipants, where the users were trying to generate high values for 50%
of the time, and low values for 50% of the time. The values are binned
around 0.0, 0.1, etc. until 1.0. This means that the outer bins are half the
size (0.00-0.05, and 0.95-1.00) of the other bins (ex. 0.05-0.15).
Below: the same but with higher sensitivity, based on one test run
participant.
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Behavioural The Emotiv output is continuous, with values ranging fromEmotiv EmoKey
translates the

continuous detection
values into key

presses, according to
self-defined rules.

0.00 to 1.00. Through EmoKey we have access to a discrete version of this
output, with 11 bins (each represented by a unique key press) to represent
these values. The Pax Britannica game is originally controlled with a key
that is pressed or released. So essentially, the game is controlled by a switch
that is either on or off.

To transform our 11-bin input to a switch, the post-processing guide-
lines indicate as a basic option the application of a threshold that yields a
rectangular wave. Thresholds in general can be improved by having an adap-
tive threshold that incorporates a confidence level, or by adding a cooldown
or dwell time to reduce false positives. EmoKey does not provide access to
confidence levels or something similar, making an adaptive threshold less
straight-forward to implement. Cooldown and dwell time would slow downConsider possible

side effects, and the
ways users might

want to interact with
the application.

the game in a way that is probably undesirable. They would make it very
difficult for the player to quickly build a series of fighters, which is actually
a common strategy in Pax Britannica.

A switch can bemademore stable withmultiple thresholds or hysteresis. An
alternativeway to obtain switch behaviour is to implement a toggle button by
using a threshold with pulse-wave output. This way the user does not have
to maintain an active state for the entire on duration. Instead, the user only
has to go from off to on to toggle states. Thismethod is especially interesting
in the case of actual hand movement, as maintaining the on state takes a lot
of effort, especially compared to the off state which only requires inaction.

With this toggle button method, there are additional post-processing op-
tions available related to button behaviour. Voting is unwanted, as it results
in less frequent application input. Retriggering the button for a long on
state, with repeat, could be beneficial, as it could provide the user with a
faster way to toggle without first having to return to a rest state and then
taking up hand-tapping again.

Application As the game is implemented in a scripting language (LUA),
it is easy to adjust and have a peek at the application state. This makes it
possible to establish and use correlations between certain state information
and control input. Based on given state information, control inputs can then
be enhanced or suppressed with an adaptive threshold, which could be seen
as a form of dynamic interface adjustment.

To investigate what the application control should behave like, I anal-
ysed game logs of people playing Pax Britannica with keyboard. Here I fo-
cus specifically on starting and ending the selection process. There are two
strategies for starting the selection process of the factory ship. One is to
always start immediately after the previous build. The second strategy is
to first wait until enough resources have been collected. There is no real
advantage for one over the other, except that the second option requires
less button-holding. The strategy where building is always followed by re-
initiating the selection procedure allows for autocompletion.
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The selection process is ended in the quadrant of the option the user
wants to build. This is preferably done when the quadrant just begins, as
this way the ship or upgrade is available at the earliest moment, at which
point it is effective immediately. Such a dependency on a specific game state
opens up the possibility of using a probabilistic model for an adaptive thresh-
old.

Metho d c ompar i s o n pr e -t e sts

Having selected a set of potentially relevant methods, I conducted two pre-
tests, with one participant each, to get an idea of the effects of these meth-
ods in practice. Although it is important to remember that these pre-tests
are only based on the experiences of one person—whichmeans the findings
may not generalize — the observations can still be informative.

The first participant tested four post-processing combinations based on
switch behaviour (threshold applied to cause a rectangular wave): threshold,
hysteresis, adaptive threshold, and hysteresis plus adaptive threshold. The main
observation was that the system as a whole was not responsive enough. As
a result, the participant had to be always on, always performing the active
task, to keep on trying to build ships with the overload of resources accumu-
lated in themean time. This required a lot of effort. The participant feltmost
in control with the simple threshold, but hysteresis plus adaptive threshold also
resulted in good control. All in all, other factors seemed to have more influ-
ence on the usability of the system than the post-processingmethods them-
selves.

The goal for the second pre-test was therefore to significantly reduce the
amount of time the user had to be active. The switch threshold was adjusted
to toggle button behaviour, which only requires short bursts of activity. This
toggle button allowed for the addition of autocompletion, further reducing ac-
tive time. Although this appeared helpful, giving the participant the results
shewanted, she actually seemed to feel less in control. The participant could
not evaluate the improvement of these methods over the switch threshold,
as that was not one of the conditions in her test.

Th e s e l e ct e d metho d s

For the purpose of the experiment in thenext chapter, I selected threemeth-
ods to compare. The application of a threshold to obtain a rectangular on/off
wave, resulting in switch behaviour, is the most direct method to obtain a
control signal that can be used in the game directly. This setup is therefore
considered the baseline condition. The second condition is toggle button be-
haviour. This seems to address one of the most important issues discovered
in the pre-tests, and is expected to make a notable difference in the effort
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required from the user to control the system. The third is the combination
of toggle button with autocompletion. Combinations of post-processing meth-
ods can be very powerful, and are therefore important to investigate. Yet,
‘good’ plus ‘good’ does not always result in ‘better’. Another reason to test
this specific condition is the remark of the second pre-test participant indi-
cating a difference between the system doing what you want and having a
sense of control. This potential trade-off asks for further inspection.

6 . 4 D i s c u s s i o n an d c on c l u s i o n s

This chapter provides an overview of post-processing methods and guide-
lines to indicate when they might be useful, with as goal to provide a first
step towards deliberate reasoning and discussion when applying these post-
processing methods. Sections 6.2 and 6.3 show, however, that these guide-
lines are just the beginning, and that there are many more decisions to be
made before one arrives at a functioning system.

The example in Section 6.3 demonstrates that the guidelines can yield
a selection of post-processing methods that could be useful in the given
situation. Additionally, it presents a possible approach for post-processing
method selection: (1) Investigate the BCI classifier (or regressor) output and
the application controls; (2) Go through each of the levels in the guidelines
to find methods that match with the issues and opportunities found in step
1; (3) Conduct user tests to make a final selection and finetune parameters.

Thepresented guidelines are also just the beginning in anotherway. ThereFuture research is
further discussed in

Section 8.2.
are likely to be more post-processing methods out there that are not listed
in this overview. Further investigation is necessary to make this overview,
the guidelines, and the other considerations more complete. This can prob-
ably be achieved most quickly as a multidisciplinary endeavour.

An important thing to note, something that is not often mentioned in
relation to post-processing, is that it is more than the bridge from detec-
tion to application control. As human-computer interaction takes place in
a cycle, post-processing will affect the input required from the user, as is ex-
emplified in Section 6.3. This is how post-processing not only affects system
accuracy, but user effort as well.

6 . 5 F r e q u e nt ly-ask e d q u e st i o n s

To end this chapter, I would like to address five questions that I get asked fre-
quently by fellow researchers. The first is why I do not go into detail about
whichmethods aremost suitable for continuous versus discrete values. The
second is quite similar, but then about the importance of self-paced versus
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system-paced input on post-processing method selection. The third ques-
tion concerns how specific these methods are to post-processing, as some
of these methods can also be found in other steps of the online BCI cycle.
The fourth — and perhaps most frequent — question is if all this is also ap-
plicable to passive interfaces, as I talk a lot about ‘control’. The last question
is important for the development of BCIs as assistive technology. Asmy own
research is applied to healthy people, how does all this translate to assistive
applications?

Which methods are most suitable for continuous (or discrete) values?
Although some post-processing methods are generally applied to discrete
and others to continuous values, no solid guidelines can be given. The main
reason is that it is easy to transform continuous values to discrete ones (see
the methods for discrete control in the overview). Discrete values can also
be represented in continuous form, by assigning classes specific continuous
values, such as -1.0, and +1.0, but it is better to use the original soft detection
labels, if available. Thesemay indicate a level of certainty or a level of power.

On the application side it is a slightly different story, as the application
may require continuous or discrete control for certain actions. But even
there, there is more wiggle room than one might think at first glance. For
example, on game consoles, movement of the main character is most com-
monly controlled with joysticks, each of which provides continuous input
on two axes. For PC games, however, this type of control is generally pro-
vided through the discrete arrow keys, orwith the left-hand alternative: the
WASD keys.

Two examples of the many BCIs that cross the discrete/continuous bor-
der: The P300 mouse uses several discrete P300 targets to control a mouse
on a screen, so, effectively on two continous axes [32]. AlphaWoW uses a
continuous value of relaxation to trigger a discrete shape change (either to
bear, or elf) [33].

Whichmethods aremost suitable for self-paced (or system-paced) sys-
tems? When the user can provide input at any time, the system is self-
paced, or asynchronous. If input is only observed during specific time slots,
the system is system-paced. The latter is also referred to as a synchronous
system, as the user and the system have to work in tandem for the user to
provide input. BCIs that need to provide some stimulus for the user to re-
act on for input (such as P300 or SSVEP) are often system-paced. The system
knows when the stimulus is shown, and only observes brain activity around
that time.

But not all self-paced systems listen only for self-induced mental inputs
(such asmotor imagery), andnot all system-pacedBCIs listen for just extern-
ally-evoked mental inputs. In the case of the P300 mouse, the P300 stimu-
lation is provided non-stop, so the user can provide input almost at any
time [32]. Of course, the input still depends on when the target flashes, but
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this is not limited to a specific period during which information is gathered
for one selection, as would normally be the case. On the other hand, it is
also possible to only listen for self-induced activity during specific periods
in time. These periods during which the system listens for mental input are
then not to provide stimuli to triggermental input, but to support the inter-
action dynamics of that specific application. To use a videogame example,
in fighting games, certain special moves can often only be executed during
specific moments in time, for example, when your adversary is down on
the floor. The perfect moment to telekinetically throw a giant rock towards
your opponent, yoda-style. To conclude, whether the BCI is self-paced or
system-paced is not necessarily a function of the input paradigm, but more
of the application.

One instance where this distinction does affect post-processing methods
is when choosing between voting and smoothing. These two methods are
two sides of the same coin. Both gather more samples in order to increase
certainty, which will introduce some delay. Voting is applied to a set of sam-
ples, whereas smoothing is generally applied to a moving window of sam-
ples. As such, voting is generally used with intermittent interaction, and
smoothingwhen the interaction takes place non-stop. Another difference is
that voting yields one more certain output for a number of inputs. Smooth-
ing results in a new output for each inter-window interval. Many voting
methods can easily be turned into smoothing methods by applying them to
a sliding window, or vice versa. However, not all methods are interchange-
able this way.

Can’t these methods also be used in other steps of the online BCI cy-
cle? Yes, the value distribution level methods and some of the behaviour
level methods (such as multimodal fusion) are also commonly used in ear-
lier processing steps where they address similar issues as highlighted in the
guidelines. The purpose of this chapter, however, is to provide an overview
of methods that can be applied after the feature translation step. That is
why the methods in this chapter are discussed from that context.

Are these methods also relevant for passive BCIs? With passive sys-
tems, the user is not supposed to actively try to manipulate the input for
the application. The user is simply observed. These observations can then
be used to adjust or control an application, such as a mood-based music
player.

This passive input still affects an application, so there are certain appli-
cation controls. There is also a correct and incorrect interpretation of the
user’s brain activity, with a corresponding system response. If feedback is
provided to the user — any brain-based adjustment of the application vis-
ible to the user is already a form of feedback — the user will have or will
construct expectations on how it should behave. All in all, for the purpose
of applying post-processingmethods, the characteristics of passive BCIs are
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quite similar: the interpretation should be somewhat accurate, match user
expectations, and be suitable to control some given application. The main
difference is that effort is no longer an issue in passive systems.

It was actually at the workshop on passive BCIs at the fifth international
BCI meeting that participants suggested using context data to help with the
problem of identifying cognitive states [34].

The distinction between passive and active BCI systems is not always as
clear as youmight assume. For example, in AlphaWoW (see Section 2.5) you
can interpret the shape-shifting passively as a representation of your cur-
rentmental state. After playing awhile,most users then start to consciously
try to change. If the systemdoes not respondwell enough, users tend to give
up, and go back to the passive way of using the system. Even in systems fully
intended for passive use, users may be tempted to try to consciously affect
the system. For an interesting discourse on this idea, applied more broadly
to ambient environments, read Nijholt [35].

How does post-processing apply to assistive applications? Post-
processing is just as important for assistive technology as it is for applica-
tions for the general population. Both user groups want good control for lit-
tle effort, although for different reasons. The general population has high
demands of interfaces because there are sufficient other input alternatives
which do offer these characteristics. If BCIs do not provide good control for
little effort, they simply will not be used by this target population.

For assistive technology, there are also various input alternatives (such
as face buttons, sip-and-puff straws, and eye trackers). Brain-computer in-
terfaces are not as easy to use and not as dependable yet as these other
options (yet) [36]. Therefore BCIs are currently only adopted by people who
have such a severe disability that these other inputs cannot be used, or can-
not be used for a longer period of time. Good control for little effort is par-
ticularly important to this group. Besides, such characteristics might make
BCI also a viable option for the less severely disabled users who now prefer
other input devices.

As post-processing can significantly improve control and reduce the nec-
essary user effort, it is an important step in the BCI pipeline, both for the
general population and users of assistive technology.

In the introduction of Chapter 5 I already brought up the P300 speller as
a concrete example. The basic BCI system can be improved by adding rep-
etitions with averaging [25]. Without repetitions, P300 spellers are highly
prone to errors, so methods such as averaging have become common-place
to make P300-based systems usable. Because language is not a random se-
quence of characters, languagemodels can provide probability information
on what has been typed so far and what is most likely to come next. Such
probabilities can be used in a variety of ways, for example to dynamically re-
duce the number of repetitions necessary per character [37]. But this can be
taken even further. For instance, take a look at Swype®[38]. This is a text en-
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try system for smart phones and tablets which uses personalized language
models for auto-correction and auto-completion. The predictions are so ac-
curate that you no longer have to lift your finger to type a particular char-
acter. You can simply glide over the various characters in your sentence.
Needless to say that if a text entry system can deal with such a low level of
preciseness, it might also be a very suitable addition to a BCI speller. Such
post-processing methods can eliminate the need for repetitions altogether
without changing anything to the underlyingmental task recognition. Auto-
completion speeds up the text entry process even further.

Another popular solution to create more usable BCI systems is to create
so-called hybrid BCIs, which combine multiple input modalities, in paral-
lel as well as sequentially. In this chapter it has been discussed in the part
onmultimodal fusion (the more generic name commonly used in the human-
computer interaction community).When applyingmultimodal fusion in the
post-classification processing stage, this can only be fusion of the results af-
ter classification, which is termed decision-level fusion. So to be exact: only
a subset of multimodal fusion can be categorized as post-processing. How-
ever, post-processing and multimodal fusion both serve the same purpose:
to improve control and reduce effort.

Key po i nt s

• The post-processing methods overview and visual guide offer inspira-
tion as to which post-classification processing methods could be ben-
eficial for a given system.

• Whether the advised post-processing methods are actually helpful
will have to be assessed in practice, and will depend on the exact im-
plementation and chosen parameter settings.

• Interaction occurs in a loop. Changing the post-processing therefore
will affect not only the system accuracy, but the effort required from
the user as well.
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p ra ct i c e

Brain-computer interfaces do not provide perfect recognition of what the user tries
to convey, which is inherent in the type of input (Chapter 1). Good task recognition
and easy task execution is very important to users (Chapter 3), and users can assess
system task recognition quite well, if they have good control over the input task
(Chapter 4). In Chapters 5 and 6 I outline a solution in the form of post-classification
processing methods, and give an example of how this could be applied. Now it is
time to investigate whether practice follows theory.

The experiment in this chapter compares three different post-processing
methods on both detection by the system and effort from the user providing
this input. The methods were purposefully selected for their effects on the
required user input, in an attempt to reduce user effort. Consequently, this
is not a simple comparison of post-processing methods, but of the resulting
input patterns as well. The main research questions are: Did these methods
indeed induce the expected difference in effort? And what is the effect on
the user’s sense of control?

The contribution of this experiment is two-fold. First of all, it puts the
theoretical guidelines from the previous chapter into practice. As such, it
builds upon the awareness raised in the previous chapters of the potential
value of post-processing methods, not only to increase detection accuracy,
but also to reduce user effort. The second contribution is that the surpris-
ing results of this experiment point to the importance of evaluating sys-
tems such as this one with the user in the loop — not just on pre-recorded
datasets, which is a common time-saving method in brain-computer inter-
face development.

7 . 1 M etho d s

Three different ways of interpreting BCI detections have been compared.
These interpretations were selected so as to decrease effort. This experi-
ment has been conducted in a randomized within-subjects manner.
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Part i c i p a nts

Eighteen people participated in this experiment. Their average age was 39
years (from 18 up to 63), 9 out of 18 were female, and all of them were
right-handed. All participants had basic computer proficiency. Six partic-
ipants never played games (this experiment centres around a simple strat-
egy game). Ten of them had no previous experience with brain-computer
interfaces. Of the eight who did, seven had previous experience with imag-
inary movement as mental task to be recognized by the BCI. None of them
had experience with actual movement to control a BCI (which is used in this
experiment).

B C I cy c l e

User Task Participants controlled the system by tapping with theirmain
hand (actualmovement). The participants were instructed to keep the palm
of the hand on their upper leg, to minimize movement artefacts, and to fo-
cus on the sense of moving the hand [1]. This kinesthetic approach is sup-
posed to elicit clearer differences in brain activity. This actual movement
task was chosen over themore traditional imaginedmovement (also known
as motor imagery), because (1) actual movement should be easier to detect
than imaginary movement [1], and (2) because it provides us with a ground
truth of what the participant was doing. An important consequence is that
besides mental effort, the task now also requires physical effort. As the par-
ticipant is aware that detection happens through the headset based on activ-
ity of the mind, not the body, and that the kinesthetic approach of concen-
trating on the feeling is vital for successful recognition, the mental aspect
is expected to remain dominant. The alternative ‘rest’ task was explained
as sitting relaxed in the chair with the hands rested on the upper legs.

Signal Acquisition Brain activity was recorded with the commercially
available Emotiv EPOC headset, which is an electroencephalograph (records
EEG). Of all methods to record brain activity, EEG is the only one which is
portable, non-invasive (does not require surgery), and provides short re-
sponse times [2]. The Emotiv EPOC is more affordable and easier to set upSee also Section 2.3.
than medical or research-grade EEG systems. For a commercial EEG head-
set, it has a lot of sensors: 14 plus 2 reference electrodes (see Figure 25 for
a crude indication of the electrode montage).

Signal Analysis and Control Interface Emotiv provides three software
applications. Testbench shows the slightly pre-processed signals per chan-
nel and a color indication of sensor connectivity (green is good). Control
panel shows a similar indication for the sensor connections (see Figure 25),
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F i g u r e 2 5 : A screenshot the Control panel main screen, showing a rough indica-
tion of sensor positions on the head.

and provides access to the Cognitiv suite, which can learn to recognize tasks
based on training data. Emokey connects to Control panel, and can generate
key presses based on user-defined conditional rules. This way, the software
applications from Emotiv can handle all the processing steps up until the
application.

F i g u r e 2 6 : A screenshot of the basket game, showing the path the ball took with
one of the participants. This trace was not visible to the player.

Application There were two applications to be controlled with the BCI.
The basket game was used purely to assess the level of control the partici-
pant had over the input without any special post-processing. The different
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post-processing setups were evaluated in a simple strategy game called Pax
Britannica.

“The basket game” is a popular tool in BCI research for assessing the
amount of control participants have over the BCI input [3, 4]. The player
has to direct balls into the correct basket by performing the right task, see
Figure 26. After a second of standing still on the left border of the screen,
the ball starts tomove to the right. The user controls the vertical position of
the ball. In our case, the ball was moved up on detected hand tapping, and
down in rest. The target would be either at the top or at the bottom half of
the screen.

Themain application in this experimentwas PaxBritannica, a one-button
strategy game developed by No Fun Games1. This simple control made it
very suitable as a test bed for BCI control. A detailed description of this ap-
plication and its interface can be found in Section 6.3, but to review briefly:
Each player is represented by a factory ship which can build smaller ships
that can fight, and ultimately destroy the opponent’s ship. The last factory
ship still standing wins. Which ships can be built depends on the number
of resources the factory ship has accumulated. These resources are gath-
ered automatically over time, and spent immediately when a ship is built
(building is instant). When the game is played with keyboard controls, hold-
ing down the button spins a needle on a radial menu in the middle of the
player’s factory ship.When the button is released, the factory shipwill build
the option corresponding to the quadrant the needle is pointing at at that
moment.

C on d i t i o n s

Three different post-processing situations were compared. Each of these re-
sulted in a different way of controlling the game. The logical input from the
Emotiv Cognitiv suite ranged from 0.0 to 1.0, with 0.0 meaning the user is
likely in the rest state, and 1.0 that the user is tapping. On the application
side, control is either on (the button is held) or off (the button is released).

Condition A is the baseline condition. Here the game is controlled by ap-
plying a simple fixed threshold to the brain-based values. This is the most
direct way to translate the continuous logical control values into the two-
state semantic control for the application. The resulting behaviour is like a
switch: the control signal is either on or off, corresponding to the user tapping
or resting, respectively.

Based on a preliminary inspection of the value distribution from the Emo-
tiv Cognitiv suite, it was decided to set this threshold to 0.4. Post-hoc inspec-
tion of the average value distribution over all participants shows that this
point is at a cumulative percentage of about 40% of the data samples. As can

1 This game is freely available: http://paxbritannica.henk.ca

http://paxbritannica.henk.ca
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F i g u r e 2 7 : Distribution of output values from the Emotiv Cognitiv suite for
rest vs. hand tapping. Values taken from basket game logs of all 18
participants, so the users were trying to generate high values for 50%
of the time, and low values for 50% of the time, to hit the correct targets.
The values are binned around 0.0, 0.1, etc. until 1.0. This means that the
outer bins are half the size (0.00–0.05, and 0.95–1.00) of the other bins
(ex. 0.05–0.15).

be seen in Figure 27, the input values are not normally distributed, but show
a clear peak for the bin for 0.00–0.05, which corresponds to complete rest,
that is to say: no handtapping at all.

One way to reduce the amount of time the user had to perform the active
handtapping task, was to simulate toggle button behaviour, which was done
in Condition B. In this case, the virtual game button was toggled on or off
when the brain values went from low to high, so when the user started tap-
ping from a rest position. The user no longer had to keep tapping to ‘hold’
the virtual button. The threshold was kept the same as in Condition A.

Condition C reduced the amount of active tapping time even more, by au-
tomatically setting the virtual in-game button to ‘held’. Now the user only
had to indicate when to release the button. Similar to Condition B, the but-
ton is releasedwhen the values go from low to high. The thresholdwas again
kept the same as in the other conditions. Condition C can be described as
‘toggle button plus macro’, where the macro addition indicates the auto-
matic holding of the virtual button in the game. See Figure 28 for a visual-
ization of the amount of active handtapping and rest time for these different
controls.

Test proto c o l

The participants could do part of the experiment in advance. On a website,
they could read the informed consent. If they did indeed consent, they could
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F i g u r e 2 8 : A visualization of the different input patterns induced by the three
different post-processing conditions. Low signal indicates rest task.
High signal the active task: hand tapping. Each of these ways of pro-
viding input results in the same control command for the application,
through different post-processing methods.

fill out a demographics questionnaire. They could read the play instructions
for Pax Britannica, and download the game to practice until they figured
out a strategy that allowed them to win three times in a row. This step is
vital, because it reduces the potential difference between participants with
more or less experience with this type of game. Interaction logs from these
practice games were e-mailed back to us. Only three participants executed
these steps in advance. For the rest, these steps were done at the start of
the main experiment.

The experiment session startedwith awelcome. If necessary, the prepara-
tory steps described above were executed. The Emotiv EPOC is explained,
and mounted on the head of the participant. In earlier experiments we ob-
served that the EPOC can cause headaches when worn for longer than 30
minutes, especially for participants with a relatively large head circumfer-
ence. The headaches seem to be caused by the sensors pressing a little too
tightly onto the head. This problem has been confirmed by other research
groups [5]. To prevent this from potentially affecting our results, we kept
the following part, duringwhich the participant has towear the EPOC, short.

The training is done through the Control Panel training tab. The rest class
could be trained in bursts of 30 seconds. The hand tapping only in bursts of
8 seconds. These durations were not by choice, but forced by the Emotiv
Cognitiv suite. A training set therefore consisted of first one time training
of rest (30 seconds), and then four bursts of hand tapping (32 seconds in
total). This setwas repeated 6 times2. After training, eachparticipant played
10 rounds of the basket game, as an initial performance assessment of the

2 In a short assessment with three participants, it was observed that six of such training sets
would provide a relatively good performance. At this number there was a peak of 72% average
accuracy in the basket game.
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Emotiv setup. Control panel also reports a ‘skill level’, which could serve as
another indication of performance.

Then all of the three conditions were tested within-subject. The three
conditions were (A) threshold, (B) toggle button, and (C) toggle button plus
macro. With 18 participants, each possible ordering of conditions has been
tested 3 times in total. The following steps were repeated for each condition.
First, the current condition was quickly explained, so the participant knew
how to control the game3. Then the participant played three game rounds,
after which the condition questionnaire was filled out with questions on
perceived control and effort. This questionnaire was kept short in order to
stay within the time limit we set to prevent headaches.

At the end of the experiment, one last questionnaire followed, where
participants specified their order of preference for the conditions and in-
dicated why. Participants were thoroughly thanked for their cooperation,
and people not employed by the university received a payment of 6 euros.

Measur ements

The demographics questionnaire contained questions about age, gender,
handedness, and previous experience with brain-computer interfaces.

Initial indications of general BCI performance could be the Emotiv skill
level indicated by the Cognitiv suite, and the basket game performance as-
sessment (game score, and percentage on the correct half of the screen).

The analysis for the added value of the selected post-processing methods
can be split up into two parts: control (or: detection accuracy), and effort.
For the subjective assessment of control, the condition questionnaire con-
tained two questions: “Howmuch control did you feel you had on the game
input?” and “Did the game do what you wanted it to?”. As an objective mea-
sure there was the number of games won (a rather crude indicator). For ef-
fort, there was one question in the questionnaire: “How much effort did it
take you to control the game?”. As an objective measure, the ratio of active
(handtapping) time to the total play time was calculated.

3 Not explaining the way the game is controlled, or what post-processing is applied, would allow
the evaluation of a certain level of intuitiveness of the game control. Additionally, the expla-
nation might influence what the user thinks the effect should be on control and effort, which
may in turn affect subjective reports. However, as the participant plays only three rounds of
the game, there is very little time to fully explore the control dynamics. Besides, as with these
selected methods the required user input is significantly different, a short explanation is war-
ranted.
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7 . 2 R e s u lt s

Ov era l l r e c o gn i t i o n

The two main indicators for overall performance were the skill level from
the Emotiv Cognitiv suite, and in the basket game the amount of time the
ball could be kept on the correct half of the screen. The average obtained
Emotiv skill level is 31%. The average basket game performance is 68% of
the time on the correct side, with an average game score of 7.9 out of 10.
Correlation analysis indicates no relation between the Emotiv skill level and
the basket game performance.

E f f o rt

Did the different post-processing methods — reflected in the conditions A
(switch), B (toggle button), and C (toggle button plus macro) — result in
different activity levels, as intended? We computed the percentage of this
active hand-tapping time from the total play time per condition. For the
comparison between conditions, we assumed the pair-wise differenceswere
normally distributed, which was supported by the Shapiro-Wilk test results.
Paired-samples t-tests on these same data sets indicated significant differ-
ences between all conditions: (t(17) = 3.18, p < 0.01) for A (M = 61.3,
SD = 13.4) vs B (M = 40.9, SD = 16.5), (t(17) = 4.4, p < 0.001) for A vs
C (M = 31.2, SD = 21.5), and t(17) = 2.43, p < 0.05) for B vs C. See the
left plot in Figure 29 for a visualization of the data. As intended, condition
A yielded a higher activity level than B, which in turn resulted in a higher
activity level than condition C.

Did this difference in activity level also result in corresponding perceived
effort levels? The plot on the right in Figure 29 shows the distribution of
the perceived effort levels per condition. Correlation analysis indicated no
significant relation. So although our setup did result in the hypothesized re-
duction in activity levels over conditions A, B, and C, this did not correspond
to a similar reduction in perceived effort.

C ontro l

There were two different questions related to control in the condition ques-
tionnaire “Did the game dowhat youwanted it to?” and “Howmuch control
did you feel you had over the game input?”. The responses per condition can
be seen in Figure 30.

The answers to these two questions were strongly correlated (r(52) =

0.88, p < 0.001). In turn, these answers also correlate with the number of



7 . 2 r e s u l t s 1 2 7

F i g u r e 2 9 : Comparison of the three different conditions on activity levels. On
the left in terms of percentage of play time during which the partici-
pants were actively tapping their hands. On the right on perceived ef-
fort. The figures show quartile box plots in Tufte style. The line ranges
from the minimum to the maximum value, excluding 1.5IQR outliers
(indicated with crosses). The whitespace in between is the range from
the first quartile to the third quartile. The dot in the centre denotes the
median.

game rounds won (r(52) = 0.43, p < 0.005 and r(52) = 0.36, p < 0.01
respectively).

The sense of control was significantly higher for A (M = 5.9, SD = 1.8)
than for B (M = 4.1, SD = 2.0) (t(17) = 2.97, p < 0.01), and B lower than
C (M = 5.1, SD = 2.1) (t(17) = −2.29, p < 0.05).

P r e f e r e n c e

In the open questions in the preference questionnaire, participants often
indicated that their sense of control was the main driver for their prefer-
ence in the different conditions (1 is most-preferred, 3 is least-preferred).
There is indeed a strong correlation between the reported sense of control
and order of preference (r(52) = −0.44, p < 0.001). Condition A (switch)
was the most-preferred with an average preference score of 1.56, followed
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F i g u r e 3 0 : Comparison of the three different conditions on subjective control
based on the questionnaire ratings.

by Condition C (toggle button plus macro) with 1.88. Condition B (toggle
button) was the least preferred, with an average preference score of 2.56.

7 . 3 D i s c u s s i o n an d c on c l u s i o n s

In the example of the previous chapter, the postprocessing guidelines were
applied to a simple one-button strategy game. In this chapter, this system
was evaluated for its effects on effort and accuracy in practice. Participants
did have some measure of control with this system, scoring 7.9 out of 10
points on average in the basket game session, by being on the correct side
of the threshold for, on average, 68% of the time.

E f f o rt

Although the different post-processing approaches did significantly reduce
the amount of active task execution (hand tapping), this did not result in
the hypothesized reduction in user effort. Less active does not necessarily
mean less perceived effort. Based on the responses of the participants in the
open questions and during the experiments themselves, we suspect that the
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main reason for this is that fast switching between active (handtapping) and
passive (rest) states actually takes more mental effort thanmaintaining the
active state. This difference between expected and actual results shows the
importance of evaluating BCIs with the user in the loop.

The discrepancy between activity and effort might also point to a differ-
ence between physical effort and mental effort. This could be assessed in
a follow-up experiment by using a questionnaire that includes this distinc-
tion, such as the NASA-TLX [6]. When using longer questionnaires, it could
become problematic to stay within the time limit to prevent headaches in-
duced by the pressure of the Emotiv EPOC headset [5]. It would also be in-
teresting to investigate whether the same results would be observed for a
body-based input modality for which the mental aspect is less pronounced.

C ontro l

The different post-processing methods affected not only the perceived
amount of effort, but also had a significant impact on the perception of con-
trol. This perception of control appears to be the main determinant as to
why users preferred some conditions over others. The importance of the
perception of control in the preference of users for mental tasks in BCIs has
been noted before [7].

On a side note: some of our participants indicated that although the con-
dition which required the least user input might have resulted in more
wins in the game, they actually felt less in control. Haselager warned us
about this potential reduction in agency through the addition of system in-
telligence [8]. Further research could be helpful here, for example, to see
whether this reduction in the sense of agency can be somewhat repaired
through better feedback.

Gamers vs . N o n - gamers

Our participant pool consisted mostly of gamers, with only 6 people who
never play games. There are too few participants to make any claims to any
differences between these groups. Both groups did feel most in control in
Condition A with a simple threshold. Interestingly, while for non-gamers,
Condition A was also most preferred, for the gamers, there was the same
level of preference for Condition A (threshold) and C (toggle button with
macro). For future research, it might be better to use more homogeneous
participant groups, or includemore participants to explicitly compare these
different user groups.
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G en e ra l i z at i o n

These results have been obtainedwith this specific inputmodality, EEGmea-
surement headset, black-boxmental state detector, and application.Whether
the observations generalize to other inputs, applications, etcetera, will re-
quire follow-up research.

For assistive technology users, the results of the experiment might have
been different. If the underlying reason for the disability also affects their
ability for sustained effort and concentration, it might actually take more
effort to maintain the active task than to switch back and forth to the rest
task. Where the balance tips will probably depend on the underlying condi-
tion and the mental tasks used to control the system.

Still, this experiment does provide some initial insight into the different
aspects that matter when trying to improve the experience of effort and
control in systems driven by uncertain user input. To be able to formulate
recommendations for researchers and developers, more research into the
effects and considerations for various post-processingmethods is definitely
required.

Key po i nt s

• The effects of post-processing methods should be evaluated not just
on improved detection accuracy, but also on other aspects theymight
affect, such as user effort.

• Post-processing methods can significantly affect the amount of time
users have to provide active input, the experienced amount of effort
to provide input, and the experienced amount of control.

• It is important to evaluate systems with user tests, as user experience
may be different from what one would have expected from theory at
first glance.

• Again, the perception of control is indicated as the main determinant
as to why the users preferred some conditions to others.
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8 G en e ra l d i s c u s s i o n

When taking a step back, looking at the overall storywoven by the results from these
experiments, I see three main threads. Even when some of these threads were not
originally meant to be the main objects of my investigations, they kept popping up
over and over again. After discussingmy results along these threads, I identify some
of the threads left hanging out of this tapestry, awaiting future research.

8 . 1 S ummary and d i s c u s s i o n

Thr ea d 1 ) T h e im p ortanc e o f c ontro l

Chapter 1 pointed out that brain-computer interfaces do not provide per-
fect control, and that this problem is inherent in the type of input. BCIs suf-
fer fromproblems related to noise, non-stationarities, and ambiguity.While
we try to move towards real-world applications, these problems only get
worse, with more noise, more distractions, and multitasking.

The issues with control touched upon in the introduction already point
to the several layers within the concept of control. When looking at it more
closely, we see that control is spread throughout all the steps in the BCI
cycle. In the end, it is the perception of the user that matters.

The next two chapters provided further motivation to address this prob-
lem of control. Chapter 3 showed us that what users consider most impor-
tant about a mental task, is how well it is recognized by the system, an im-
portant aspect of control. Task recognition can significantly affect other
measurements of the user experience. When we then varied this level of
recognition in Chapter 4, we discovered that users had a good perception
of their level of control, at least when they were certain about the input
they provide. To translate this to brain-computer interfaces: when users are
more certain about the mental input they provide, through training, the ac-
tual task recognition will contribute more and more to their perception of
control.

The chapters that follow (Chapters 5 and 6) propose post-classification
processing as a solution to improve control after the initial task recognition

1 3 3
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step. The results from literature seempromising. Chapter 7 shows howpost-
processing does indeed have a significant impact in practice and how the
perceived level of control was the deciding factor in user preference for the
different post-processing methods that were tested.

Every time I evaluated user preference, aspects of control turned out to
be the most important. Task recognition by the system is most important
for mental task preference of the user. The resulting perception of control
by the user is most important for selecting post-processing methods when
designing, developing, and finetuning BCIs. The importance of good control
had already been well established for disabled end-users, but is now also
confirmed for healthy users. This result provides additional motivation to
the already existing focus on control in existing BCI research.

Thr ea d 2 ) T h e u s e r i n th e l o o p

I already point out the limited approach common in BCI experiments in
Chapter 1, which prefers to keep users and applications out of the equation.
In Chapter 3 I deliberately apply user-centred methods, first to select new
potential mental tasks, and second to investigate what users prefer in these
mental tasks.

Chapter 4 then shows us that actual control and the user’s perception of
it actually line up pretty well. So there is not always a gap between percep-
tion and reality. But this observation also opens up another line of thinking:
could we deliberately manipulate user perception of control?

When I evaluate my proposed solution of using post-processing methods
to improve control and reduce user effort in Chapter 7, the importance of
the user becomes more clear than ever. The results are quite different from
what I expected based on theory, and all because of the user experience.
Where I thought the experience of effort would come from executing the
more active task, it turns out that in practice, switching between the active
and inactive tasks was what demanded the most effort. This is something
I could never have discovered had I conducted an offline test based on an
existing dataset.

In human-computer interaction research, the importance of the user in
thewhole equation is knownand accepted. HCI researchhas valuable knowl-
edge and methods to offer which are made to develop systems that people
can and even want to use. The BCI community only has to open its doors a
bit more widely to benefit. Hopefully the cases in this thesis will provide a
helpful nudge.
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Thr ea d 3 ) P r om i s i n g p o st - p r o c e s s i n g

This final thread is the one I originally intended to be the main storyline.
There is a lot of overlap between Threads 1 and 3, as Thread 1 (the impor-
tance of control) supports the main motivation for the importance of con-
trol and Thread 3 focuses on a potential solution to the control issues inher-
ent in BCIs.

After establishing the importance of control to the user, I propose to use
post-classification processing methods as a solution. Based on the findings
in Chapter 5 I can say that these methods can be highly beneficial, but have
received too little attention in the BCI community. To be able to really bene-
fit from thesemethods, they need to be appliedmore deliberately, accompa-
nied by discussion and evaluation. Chapter 6 provides an overview of meth-
ods, with guidelines on how to apply them, which will hopefully support
BCI researchers and developers to approach these methods more purpo-
sively. Chapter 7 confirms the significant effects post-processing methods
can have, but also warns us that theory does not always follow practice.

The promise of post-processing methods and lack of current practice is
clearly established in this thesis. But this is only a first step into this line of
research.

8 . 2 F utur e r e s ear c h

Research is always limited: in sample sizes, tested user tasks, applications,
and any other factors that may be of influence to its outcomes. This means
that its findings may not be generalizable to other contexts. To establish
such generalizability, further research is necessary. See the discussion sec-
tions with each experiment for the details. Besides this, I would like to point
out some other interesting directions for future research.

Towards i ntu i t i v e , i n t e nt - ba s e d c ontro l

Originally, my work was to be about the development of intuitive brain-
computer interfaces. This goal is recognizable in Chapter 3, for example.
After a couple of years I noticed that what I actually had been doing was to
makebrain-computer interfacesmore usable through these post-processing
methods, which henceforth became the topic of my thesis.

Themost-usedmental tasks in brain-computer interfaces are not very in-
tuitive. The user can be trained so these tasks becomemore familiar, but the
tasks are not familiar from other experiences in life, which is one way to in-
terpret the term ‘intuitive’. Intuitivemental tasks are easy to learn and easy
to remember. As BCIs provide a new input modality, with no established
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frameworks that new users could make use of (such as swiping, pinching,
etc. for touch interfaces) a high level of natural intuitiveness would make
this new technology easier to use and accept.

One way of making BCIs more intuitive is the use of naturally-occurring
brain activity. Instead of artificial mental tasks, systems could learn to de-
tect brain activity that is naturally related to the user’s intent. This is not
necessarily passive, as the user can be actively pursuing this intent. When
using naturally-occurring brain activity accompanying a user’s intent, no
translation of the intent to an artificial task and resulting system control
would be required. Instead, brain activity could be directly interpreted as
reflecting the intention itself. This would allow the user to focus entirely on
the task at hand.

To provide an analogy, if you are a proficient computer user, you are no
longer conscious of typing on the keyboard when you write an e-mail. Your
full attention is on the message you are trying to convey. A similar experi-
ence should be achievable with brain-computer interfaces, and with the se-
lection of suitable mental tasks in relation to the corresponding application
controls, perhaps it can be achievable without the extensive user training
such an experience normally requires.

I still believe this to be a fruitful research direction for brain-computer in-
terfaces especially. Based on the promises in pop-culture references, this is
what people have come to expect from brain-computer interfaces: intuitive,
intent-based control.

Man i p u l at i o n o f p e r c e pt i o n o f c ontro l

The perception of control can be improved by improving the control itself,
or… bymanipulating the perception of control. In the discussion of Chapter 4
I already point to this interesting avenue for future research, which could
have relevant applications for all input modalities which suffer from inher-
ent uncertainty. This manipulation could for example be through the input
task, application controls or effects, or the feedback.

Through the application controls and effects of these controls, develop-
ers can appeal to specific psychological phenomena which will encourage
users to have a more optimistic assessment of the amount of control they
have over the system. For example the fact that people overestimate their
influence on events that have a positive outcome and underestimate their
influence on negative outcomes can be used as follows: by using the BCI
input to obtain a gain (instead of to prevent a loss), and using other modal-
ities with better recognition rates for tasks that could have more negative
results.

To explain this more clearly, let us take look at one of the prototypes
mentioned in this thesis. AlphaWoW already applies the second part of this
principle by keeping the standardmouse and keyboard for the primary con-
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trols (movement and abilities), while using BCI input on secondary control
aspects that are less critical for survival and playability. In this case, the
loss prevented is highly inefficient gameplay in the best scenario to virtual
death in the worst. The secondary control aspects simply induce a differ-
ent style of play, which is not always a gain, although it can be situationally
beneficial. The user assessment might have been more positive if the BCI
had had an explicit benefit, such as a more effective use of the character’s
abilities when the player is more relaxed.

This line of perception manipulation is particularly suitable for games,
as the goals and results of user actions are designed by the game designers
instead of following from some external user goals.

Uncertainty can also be introduced, increased, ormaintained through the
mental task and the provided feedback. For certain mental tasks it is more
difficult to assess whether you are performing them correctly, such as mo-
tor imagery. Others are already difficult to explain in the first place, such
as the type of relaxation related to reduced activity in the parietal cortex.
Such tasks have an inherent level of uncertainty. In such cases, users will
have to trust the feedback from the system more than their own senses, at
least initially. This dependence on feedback from the system creates an op-
portunity to manipulate the user’s perception.

Feedback can be less ormore specific in twoways: what feedback informa-
tion is provided and how it is communicated. To go back to the AlphaWoW
example: we show the user their amount of relaxation in a bar chart, one of
the easiest to interpret options for visualizing information. A less precise
alternative would have been to use the colour of a glow around the avatar
to communicate the amount of relaxation. We could also withhold the feed-
back on relaxation altogether, leaving the userwith only the high-level feed-
back of whether they are in elf-shape or bear. If the detection accuracy is
low, the level or preciseness of the feedback should reflect this. This reduces
annoyance with incorrect recognitions. On the other hand, when the detec-
tion is highly accurate,more detailed feedback better supports learning and
expert use.

Such deliberate manipulation of the perception of control could be a use-
ful research direction for all uncertain input modalities, as it has the poten-
tial to increase the user acceptance of these inputs. Application will not be
straight-forward, as there are some important trade-offs to consider here.
Although the task-induced and feedback-induced uncertainties described
above may open up opportunities for user acceptance, at the same time it
impedes the user in learning to control the input. Such trade-offs may be
dealt with dynamically, with more probable or certain detections resulting
inmore detailed feedback on the fly, or by providingmore detailed feedback
in specific training situations.
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F u rth e r d ev e l o pment o f th e g u i d e l i n e s

The main two implications of this thesis for BCI development is to (1) use
HCI knowledge and methods to create usable systems users want, and (2) to
use post-processingmethods to improve this usability. This second implica-
tion has been described in this thesis as the need for deliberate application
with structured discussion and evaluation of their advantages and disadvan-
tages.

To enable this, this thesis provides an overview and guidelines, but these
are but a first draft. The list ofmethods can be extended, (a) bywidening the
search net of Chapter 5 to find more examples of post-processing use in BCI
research, (b) by further investigating the post-processing methods used by
other input methods, and (c) by continuing the search in other research ar-
eas with similar problems, such as machine learning and control theory. An
interdisciplinary approach is advised to arrive at amore complete overview
and guidelines.

Brain-computer interfaces are not the only inputs which suffer from the
various issues that create this inherent uncertainty. Many inputs based on
measurements from the body do. The overview and guidelines in Chapter 6
have been set up to be applicable to these other uncertain inputs as well.

It would be highly valuable if through concerted effort from the research
areas of each of these modalities this overview and the guidelines could be
extended andmade up-to-datewith current developments. Thisway, under-
lying common principles can be identified, and all input modalities could
benefit.
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Controlling things directly with your mind sounds like magic, yet brain-computer interfaces 
(BCIs) promise us just that. After decades of research, we have prototypes that show that 
this form of telekinesis through technology is possible, but not easy…

Most of the current research on BCIs is focused on improving the detection of the ‘thoughts’ 
that control these interfaces. This book goes beyond that, looking at the system as a 
whole. This fresh point of view opens up new ways to dramatically improve BCIs, making 
them more accurate and more easy to control.

The first half of the book tackles the basic questions: What do users want from BCI 
control? Do they even know how much control they really have? The second half provides 
simple post-processing methods. If you are looking for a way to patch up brain-computer 
interfaces to provide the user better control for less effort, look no further.
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